本文由 lizhike19871013 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修一配套课时作业函数的应用 3.1.2 Word版含解析
3.1.2 用二分法求方程的近似解
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
1.二分法的概念
对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求________________________________________________________________________.
2.用二分法求函数f(x)零点近似值的步骤:
(1)确定区间[a,b],验证____________,给定精确度ε;
(2)求区间(a,b)的中点____;
(3)计算f(c);
①若f(c)=0,则________________;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈________);
③若f(c)·f(b)<0,则令a=c(此时零点x0∈________).
(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是( )
3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2007)<0,f(2008)<0,f(2009)>0,则下列叙述正确的是( )
A.函数f(x)在(2007,2008)内不存在零点
B.函数f(x)在(2008,2009)内不存在零点
C.函数f(x)在(2008,2009)内存在零点,并且仅有一个
D.函数f(x)在(2007,2008)内可能存在零点
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A.(1,1.25) B.(1.25,1.5)
C.(1.5,2) D.不能确定
5.利用计算器,列出自变量和函数值的对应关系如下表:
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
…
y=2x
1.149
1.516
2.0
2.639
3.482
4.595
6.063
8.0
10.556
…
y=x2
0.04
0.36
1.0
1.96
3.24
4.84
6.76
9.0
11.56
…
那么方程2x=x2的一个根位于下列哪个区间内( )
A.(0.6,1.0) B.(1.4,1.8)
C.(1.8,2.2) D.(2.6,3.0)
6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)
①(-∞,1] ②[1,2] ③[2,3] ④[3,4]
⑤[4,5] ⑥[5,6] ⑦[6,+∞)
x
1
2
3
4
5
6
f(x)
136.123
15.542
-3.930
10.678
-50.667
-305.678
8.用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是________.
9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.6875)<0,即可得出方程的一个近似解为____________(精确度为0.1).
三、解答题
10.确定函数f(x)=+x-4的零点所在的区间.
11.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
能力提升
12.下列是关于函数y=f(x),x∈[a,b]的命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为( )
A.0B.1C.3D.4
13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?
1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.
2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为.
3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.
3.1.2 用二分法求方程的近似解
知识梳理
1.f(a)·f(b)<0 一分为二 逐步逼近零点 方程的近似解
2.(1)f(a)·f(b)<0 (2)c (3)①c就是函数的零点 ②(a,c)
③(c,b)
作业设计
1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
2.A [由选项A中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A选项中的零点不是变号零点,不符合二分法的定义.]
3.D
4.B [∵f(1)·f(1.5)<0,x1==1.25.
又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,
则方程的根落在区间(1.25,1.5)内.]
5.C [设f(x)=2x-x2,根据列表有f(0.2)=1.149-0.04>0,
f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]
6.B [∵f(x)=2x-,f(x)由两部分组成,2x在(1,+∞)上单调递增,-在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1又∵x2>x0,∴f(x2)>f(x0)=0.]
7.③④⑤
8.[2,2.5)
解析 令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,
f(2.5)=15.625-10=5.625>0.
∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).
9.0.75或0.6875
解析 因为|0.75-0.6875|=0.0625<0.1,
所以0.75或0.6875都可作为方程的近似解.
10.解 (答案不唯一)
设y1=,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.
由图知,y1与y2在区间(0,1)内有一个交点,
当x=4时,y1=-2,y2=0,f(4)<0,
当x=8时,y1=-3,y2=-4,f(8)=1>0,
∴在(4,8)内两曲线又有一个交点.
故函数f(x)的两零点所在的区间为(0,1),(4,8).
11.证明 设函数f(x)=2x+3x-6,
∵f(1)=-1<0,f(2)=4>0,
又∵f(x)是增函数,
∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,
则方程6-3x=2x在区间[1,2]内有唯一一个实数解.
设该解为x0,则x0∈[1,2],
取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,
∴x0∈(1,1.5),
取x2=1.25,f(1.25)≈0.128>0,
f(1)·f(1.25)<0,∴x0∈(1,1.25),
取x3=1.125,f(1.125)≈-0.444<0,
f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),
取x4=1.1875,f(1.1875)≈-0.16<0,
f(1.1875)·f(1.25)<0,
∴x0∈(1.1875,1.25).
∵|1.25-1.1875|=0.0625<0.1,
∴1.1875可作为这个方程的实数解.
12.A [∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]
13.解 第一次各13枚称重,选出较轻一端的13枚,继续称;
第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;
第三次两端各3枚,选出较轻的3枚继续称;
第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.
∴最多称四次.
课时目标 1.理解二分法求方程近似解的原理.2.能根据具体的函数,借助于学习工具,用二分法求出方程的近似解.3.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.
1.二分法的概念
对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求________________________________________________________________________.
2.用二分法求函数f(x)零点近似值的步骤:
(1)确定区间[a,b],验证____________,给定精确度ε;
(2)求区间(a,b)的中点____;
(3)计算f(c);
①若f(c)=0,则________________;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈________);
③若f(c)·f(b)<0,则令a=c(此时零点x0∈________).
(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
一、选择题
1.用“二分法”可求近似解,对于精确度ε说法正确的是( )
A.ε越大,零点的精确度越高
B.ε越大,零点的精确度越低
C.重复计算次数就是ε
D.重复计算次数与ε无关
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是( )
3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2007)<0,f(2008)<0,f(2009)>0,则下列叙述正确的是( )
A.函数f(x)在(2007,2008)内不存在零点
B.函数f(x)在(2008,2009)内不存在零点
C.函数f(x)在(2008,2009)内存在零点,并且仅有一个
D.函数f(x)在(2007,2008)内可能存在零点
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A.(1,1.25) B.(1.25,1.5)
C.(1.5,2) D.不能确定
5.利用计算器,列出自变量和函数值的对应关系如下表:
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
…
y=2x
1.149
1.516
2.0
2.639
3.482
4.595
6.063
8.0
10.556
…
y=x2
0.04
0.36
1.0
1.96
3.24
4.84
6.76
9.0
11.56
…
那么方程2x=x2的一个根位于下列哪个区间内( )
A.(0.6,1.0) B.(1.4,1.8)
C.(1.8,2.2) D.(2.6,3.0)
6.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0
题 号
1
2
3
4
5
6
答 案
二、填空题
7.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号)
①(-∞,1] ②[1,2] ③[2,3] ④[3,4]
⑤[4,5] ⑥[5,6] ⑦[6,+∞)
x
1
2
3
4
5
6
f(x)
136.123
15.542
-3.930
10.678
-50.667
-305.678
8.用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是________.
9.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.6875)<0,即可得出方程的一个近似解为____________(精确度为0.1).
三、解答题
10.确定函数f(x)=+x-4的零点所在的区间.
11.证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解.(精确度0.1)
能力提升
12.下列是关于函数y=f(x),x∈[a,b]的命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为( )
A.0B.1C.3D.4
13.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?
1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.
2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为.
3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.
3.1.2 用二分法求方程的近似解
知识梳理
1.f(a)·f(b)<0 一分为二 逐步逼近零点 方程的近似解
2.(1)f(a)·f(b)<0 (2)c (3)①c就是函数的零点 ②(a,c)
③(c,b)
作业设计
1.B [依“二分法”的具体步骤可知,ε越大,零点的精确度越低.]
2.A [由选项A中的图象可知,不存在一个区间(a,b),使f(a)·f(b)<0,即A选项中的零点不是变号零点,不符合二分法的定义.]
3.D
4.B [∵f(1)·f(1.5)<0,x1==1.25.
又∵f(1.25)<0,∴f(1.25)·f(1.5)<0,
则方程的根落在区间(1.25,1.5)内.]
5.C [设f(x)=2x-x2,根据列表有f(0.2)=1.149-0.04>0,
f(0.6)>0,f(1.0)>0,f(1.4)>0,f(1.8)>0,f(2.2)<0,f(2.6)<0,f(3.0)<0,f(3.4)<0.因此方程的一个根在区间(1.8,2.2)内.]
6.B [∵f(x)=2x-,f(x)由两部分组成,2x在(1,+∞)上单调递增,-在(1,+∞)上单调递增,∴f(x)在(1,+∞)上单调递增.∵x1
7.③④⑤
8.[2,2.5)
解析 令f(x)=x3-2x-5,则f(2)=-1<0,f(3)=16>0,
f(2.5)=15.625-10=5.625>0.
∵f(2)·f(2.5)<0,∴下一个有根的区间为[2,2.5).
9.0.75或0.6875
解析 因为|0.75-0.6875|=0.0625<0.1,
所以0.75或0.6875都可作为方程的近似解.
10.解 (答案不唯一)
设y1=,y2=4-x,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象,如图.
由图知,y1与y2在区间(0,1)内有一个交点,
当x=4时,y1=-2,y2=0,f(4)<0,
当x=8时,y1=-3,y2=-4,f(8)=1>0,
∴在(4,8)内两曲线又有一个交点.
故函数f(x)的两零点所在的区间为(0,1),(4,8).
11.证明 设函数f(x)=2x+3x-6,
∵f(1)=-1<0,f(2)=4>0,
又∵f(x)是增函数,
∴函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,
则方程6-3x=2x在区间[1,2]内有唯一一个实数解.
设该解为x0,则x0∈[1,2],
取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,
∴x0∈(1,1.5),
取x2=1.25,f(1.25)≈0.128>0,
f(1)·f(1.25)<0,∴x0∈(1,1.25),
取x3=1.125,f(1.125)≈-0.444<0,
f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),
取x4=1.1875,f(1.1875)≈-0.16<0,
f(1.1875)·f(1.25)<0,
∴x0∈(1.1875,1.25).
∵|1.25-1.1875|=0.0625<0.1,
∴1.1875可作为这个方程的实数解.
12.A [∵①中x0∈[a,b]且f(x0)=0,∴x0是f(x)的一个零点,而不是(x0,0),∴①错误;②∵函数f(x)不一定连续,∴②错误;③方程f(x)=0的根一定是函数f(x)的零点,∴③错误;④用二分法求方程的根时,得到的根也可能是精确值,∴④也错误.]
13.解 第一次各13枚称重,选出较轻一端的13枚,继续称;
第二次两端各6枚,若平衡,则剩下的一枚为假币,否则选出较轻的6枚继续称;
第三次两端各3枚,选出较轻的3枚继续称;
第四次两端各1枚,若不平衡,可找出假币;若平衡,则剩余的是假币.
∴最多称四次.
- 01-05高中数学必修1单元质量评估(一)
- 01-05高中数学选修1-2课堂10分钟达标练2.2 反证法 探究导学课型 Word版含答案
- 01-04高中数学选修1-1课时提升作业 全称量词 1.4.2 存在量词Word版含答案
- 01-04高中数学选修1-2:考前过关训练(三) Word版含答案
- 12-30高中数学选修1-2学业分层测评9 复数的几何意义 Word版含解析
- 12-30高中数学选修1-1课堂10分钟达标练 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用Word版含答案
- 12-30高中数学选修1-2课时提升作业六2.1.2 分析法 精讲优练课型 Word版含答案
- 12-28高中人教A版数学必修1单元测试 基本初等函数(Ⅰ)(一)A卷 Word版含解析
- 12-28高中数学人教A版必修二 第三章 直线与方程 学业分层测评19 Word版含答案
- 12-28高中数学选修1-1课时自测3.2 导数的计算 第2课时 导数的运算法则Word版含答案