本文由 ld33666 收集发布,转载请注明出处,如有问题请联系我们!高中数学(人教版必修2)配套练习 第四章4.2.1
4.2 直线、圆的位置关系
4.2.1 直线与圆的位置关系
一、基础过关
1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是 ( )
A.过圆心 B.相切 C.相离 D.相交
2.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程为( )
A.y=2x B.y=2x-2
C.y=x+ D.y=x-
3.若圆C半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是 ( )
A.(x-2)2+(y-1)2=1 B.(x-2)2+(y+1)2=1
C.(x+2)2+(y-1)2=1 D.(x-3)2+(y-1)2=1
4.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)的位置是 ( )
A.在圆上 B.在圆外
C.在圆内 D.都有可能
5.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为________.
6.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,则圆C的标准方程为____________.
7.已知圆C和y轴相切,圆心C在直线x-3y=0上,且被直线y=x截得的弦长为2,求圆C的方程.
8.已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆C截得的弦AB满足:以AB为直径的圆经过原点.
二、能力提升
9.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为 ( )
A.1 B.2 C. D.3
10.圆x2+y2+2x+4y-3=0上到直线l:x+y+1=0的距离为的点有 ( )
A.1个 B.2个 C.3个 D.4个
11.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,且∠APB=60°,则动点P的轨迹方程为__________________.
12.已知P是直线3x+4y+8=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.
(1)求四边形PACB面积的最小值;
(2)直线上是否存在点P,使∠BPA=60°,若存在,求出P点的坐标;若不存在,说明
理由.
三、探究与拓展
13.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么数,直线l与圆C恒交于两点;
(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.
答案
1.D 2.A 3.A 4.B
5.4
6.(x-3)2+y2=4
7.解 设圆心坐标为(3m,m),∵圆C和y轴相切,得圆的半径为3|m|,∴圆心到直线y=x的距离为=|m|.
由半径、弦心距的关系得9m2=7+2m2,
∴m=±1.∴所求圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
8.解 假设存在且设l为:y=x+m,圆C化为(x-1)2+(y+2)2=9,圆心C(1,-2).
解方程组
得AB的中点N的坐标N(-,),
由于以AB为直径的圆过原点,所以|AN|=|ON|.
又|AN|==,
|ON|=.
所以9-=2+2,解得m=1或m=-4.
所以存在直线l,方程为x-y+1=0和x-y-4=0,并可以检验,这时l与圆是相交于两点的.
9.C 10.C
11.x2+y2=4
12.解 (1)如图,连接PC,由P点在直线3x+4y+8=0上,可设P点坐标为(x,-2-x).
圆的方程可化为(x-1)2+(y-1)2=1,
所以S四边形PACB=2S△PAC=2××|AP|×|AC|=|AP|.
因为|AP|2=|PC|2-|CA|2=|PC|2-1,
所以当|PC|2最小时,|AP|最小.
因为|PC|2=(1-x)2+(1+2+x)2=(x+1)2+9.
所以当x=-时,|PC|=9.
所以|AP|min==2.
即四边形PACB面积的最小值为2.
(2)假设直线上存在点P满足题意.
因为∠APB=60°,|AC|=1,
所以|PC|=2.
设P(x,y),则有
整理可得25x2+40x+96=0,
所以Δ=402-4×25×96<0.所以这样的点P是不存在的.
13.(1)证明 ∵直线l的方程可化为(2x+y-7)m+(x+y-4)=0(m∈R).
∴l过的交点M(3,1).
又∵M到圆心C(1,2)的距离为d==<5,
∴点M(3,1)在圆内,∴过点M(3,1)的直线l与圆C恒交于两点.
(2)解 ∵过点M(3,1)的所有弦中,弦心距d≤,弦心距、半弦长和半径r构成直角三角形,∴当d2=5时,半弦长的平方的最小值为25-5=20.
∴弦长AB的最小值|AB|min=4.
此时,kCM=-,kl=-.
∵l⊥CM,∴·=-1,
解得m=-.
∴当m=-时,取到最短弦长为4.
4.2.1 直线与圆的位置关系
一、基础过关
1.直线3x+4y+12=0与圆(x+1)2+(y+1)2=9的位置关系是 ( )
A.过圆心 B.相切 C.相离 D.相交
2.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程为( )
A.y=2x B.y=2x-2
C.y=x+ D.y=x-
3.若圆C半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是 ( )
A.(x-2)2+(y-1)2=1 B.(x-2)2+(y+1)2=1
C.(x+2)2+(y-1)2=1 D.(x-3)2+(y-1)2=1
4.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)的位置是 ( )
A.在圆上 B.在圆外
C.在圆内 D.都有可能
5.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,则线段PQ的长为________.
6.已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,则圆C的标准方程为____________.
7.已知圆C和y轴相切,圆心C在直线x-3y=0上,且被直线y=x截得的弦长为2,求圆C的方程.
8.已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆C截得的弦AB满足:以AB为直径的圆经过原点.
二、能力提升
9.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为 ( )
A.1 B.2 C. D.3
10.圆x2+y2+2x+4y-3=0上到直线l:x+y+1=0的距离为的点有 ( )
A.1个 B.2个 C.3个 D.4个
11.由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,且∠APB=60°,则动点P的轨迹方程为__________________.
12.已知P是直线3x+4y+8=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.
(1)求四边形PACB面积的最小值;
(2)直线上是否存在点P,使∠BPA=60°,若存在,求出P点的坐标;若不存在,说明
理由.
三、探究与拓展
13.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么数,直线l与圆C恒交于两点;
(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.
答案
1.D 2.A 3.A 4.B
5.4
6.(x-3)2+y2=4
7.解 设圆心坐标为(3m,m),∵圆C和y轴相切,得圆的半径为3|m|,∴圆心到直线y=x的距离为=|m|.
由半径、弦心距的关系得9m2=7+2m2,
∴m=±1.∴所求圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
8.解 假设存在且设l为:y=x+m,圆C化为(x-1)2+(y+2)2=9,圆心C(1,-2).
解方程组
得AB的中点N的坐标N(-,),
由于以AB为直径的圆过原点,所以|AN|=|ON|.
又|AN|==,
|ON|=.
所以9-=2+2,解得m=1或m=-4.
所以存在直线l,方程为x-y+1=0和x-y-4=0,并可以检验,这时l与圆是相交于两点的.
9.C 10.C
11.x2+y2=4
12.解 (1)如图,连接PC,由P点在直线3x+4y+8=0上,可设P点坐标为(x,-2-x).
圆的方程可化为(x-1)2+(y-1)2=1,
所以S四边形PACB=2S△PAC=2××|AP|×|AC|=|AP|.
因为|AP|2=|PC|2-|CA|2=|PC|2-1,
所以当|PC|2最小时,|AP|最小.
因为|PC|2=(1-x)2+(1+2+x)2=(x+1)2+9.
所以当x=-时,|PC|=9.
所以|AP|min==2.
即四边形PACB面积的最小值为2.
(2)假设直线上存在点P满足题意.
因为∠APB=60°,|AC|=1,
所以|PC|=2.
设P(x,y),则有
整理可得25x2+40x+96=0,
所以Δ=402-4×25×96<0.所以这样的点P是不存在的.
13.(1)证明 ∵直线l的方程可化为(2x+y-7)m+(x+y-4)=0(m∈R).
∴l过的交点M(3,1).
又∵M到圆心C(1,2)的距离为d==<5,
∴点M(3,1)在圆内,∴过点M(3,1)的直线l与圆C恒交于两点.
(2)解 ∵过点M(3,1)的所有弦中,弦心距d≤,弦心距、半弦长和半径r构成直角三角形,∴当d2=5时,半弦长的平方的最小值为25-5=20.
∴弦长AB的最小值|AB|min=4.
此时,kCM=-,kl=-.
∵l⊥CM,∴·=-1,
解得m=-.
∴当m=-时,取到最短弦长为4.
- 11-03高中数学选修1-2课堂10分钟达标练:4.2 结构图 探究导学课型 Word版含答案
- 11-03高中数学选修1-1模块综合测评 Word版含解析
- 11-03高中人教A版数学必修1单元测试 集合与函数概念(二)B卷 Word版含解析
- 11-02高中数学必修一配套单元检测:模块综合检测B Word版含解析
- 11-02高中数学必修1课时提升作业(二十一)
- 10-31高中数学必修一配套课时作业集合与函数的概念 1.2习题课 Word版含解析
- 10-31高中数学人教选修1-2同步练习:4.流程图 Word版含解析
- 10-30高中数学人教选修1-2同步练习2 回归分析 第二课时 Word版含解析
- 10-30高中人教A版数学必修1单元测试(第一章)A卷 Word版含解析
- 10-30高中数学必修1单元质量评估(三)