本文由 967554 收集发布,转载请注明出处,如有问题请联系我们!高中数学人教选修1-2同步练习独立性检验 Word版含解析
第一章 统计案例
1.1 独立性检验
一、基础过关
1.下面是一个2×2列联表:
y1
y2
总计
x1
a
21
73
x2
8
25
33
总计
b
46
则表中a、b处的值分别为 ( )
A.94、96 B.52、50 C.52、60 D.54、52
2.在2×2列联表中,四个变量的取值n11,n12,n21,n22应是 ( )
A.任意实数 B.正整数
C.不小于5的整数 D.非负整数
3.如果有99%的把握认为“x与y有关系”,那么χ2满足 ( )
A.χ2>6.635 B.χ2≥5.024
C.χ2≥7.879 D.χ2>3.841
4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )
A.若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
D.以上三种说法都不正确
5.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,为了判断选修统计专业是否与性别有关系,根据表中数据,得到χ2=≈4.844,因为4.844>3.841.所以选修统计专业与性别有关系,那么这种判断出错的可能性为________.
没选统计专业
选统计专业
男
13
10
女
7
20
二、能力提升
6.在2×2列联表中,两个分类变量有关系的可能性越大,相差越大的两个比值为( )
A.与 B.与
C.与 D.与
7.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关、无关).
8.在使用独立性检验时,下列说法正确的个数为______.
①对事件A与B的检验无关时,两个事件互不影响;②事件A与B关系越密切,则χ2就越大;③χ2的大小是判定事件A与B是否相关的唯一根据;④若判定两事件A与B有关,则A发生B一定发生.
9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:
无效
有效
合计
男性患者
15
35
50
女性患者
6
44
50
合计
21
79
100
计算χ2≈______,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为______.
10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:
支持新教材
支持旧教材
合计
教龄在15年以上的教师
12
25
37
教龄在15年以下的教师
10
24
34
合计
22
49
71
根据此资料,你是否认为教龄的长短与支持新的数学教材有关?
11.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?
12.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
三、探究与拓展
13.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:
积极支持教育改革
不太赞成教育改革
合计
大学专科以上学历
39
157
196
大学专科以下学历
29
167
196
合计
68
324
392
对于教育机构的研究项目,根据上述数据能得出什么结论?
答案
1.C 2.C 3.A 4.C 5.5% 6.A 7.有关 8.1 9.4.882 5%
10.解 由公式得
χ2=
=
≈0.08.
∵χ2<3.841.
∴我们没有理由说教龄的长短与支持新的数学教材有关.
11.解 根据题意,列出2×2列联表如下:
晕机
不晕机
合计
男乘客
24
31
55
女乘客
8
26
34
合计
32
57
89
由公式可得
χ2=≈3.689<3.841,
故我们没有理由认为“在天气恶劣的飞行航程中,男乘客比女乘客更容易晕机”.
12.解 (1)列联表如下:
休闲方式
性别
看电视
运动
合计
女
43
27
70
男
21
33
54
合计
64
60
124
(2)χ2=≈6.201,
∵χ2>3.841且χ2<6.635.
∴有95%的把握认为性别与休闲方式有关.
13.解 χ2=≈1.78.
因为1.78<3.841,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.
1.1 独立性检验
一、基础过关
1.下面是一个2×2列联表:
y1
y2
总计
x1
a
21
73
x2
8
25
33
总计
b
46
则表中a、b处的值分别为 ( )
A.94、96 B.52、50 C.52、60 D.54、52
2.在2×2列联表中,四个变量的取值n11,n12,n21,n22应是 ( )
A.任意实数 B.正整数
C.不小于5的整数 D.非负整数
3.如果有99%的把握认为“x与y有关系”,那么χ2满足 ( )
A.χ2>6.635 B.χ2≥5.024
C.χ2≥7.879 D.χ2>3.841
4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )
A.若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
D.以上三种说法都不正确
5.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,为了判断选修统计专业是否与性别有关系,根据表中数据,得到χ2=≈4.844,因为4.844>3.841.所以选修统计专业与性别有关系,那么这种判断出错的可能性为________.
没选统计专业
选统计专业
男
13
10
女
7
20
二、能力提升
6.在2×2列联表中,两个分类变量有关系的可能性越大,相差越大的两个比值为( )
A.与 B.与
C.与 D.与
7.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关、无关).
8.在使用独立性检验时,下列说法正确的个数为______.
①对事件A与B的检验无关时,两个事件互不影响;②事件A与B关系越密切,则χ2就越大;③χ2的大小是判定事件A与B是否相关的唯一根据;④若判定两事件A与B有关,则A发生B一定发生.
9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:
无效
有效
合计
男性患者
15
35
50
女性患者
6
44
50
合计
21
79
100
计算χ2≈______,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为______.
10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:
支持新教材
支持旧教材
合计
教龄在15年以上的教师
12
25
37
教龄在15年以下的教师
10
24
34
合计
22
49
71
根据此资料,你是否认为教龄的长短与支持新的数学教材有关?
11.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?
12.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.
三、探究与拓展
13.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:
积极支持教育改革
不太赞成教育改革
合计
大学专科以上学历
39
157
196
大学专科以下学历
29
167
196
合计
68
324
392
对于教育机构的研究项目,根据上述数据能得出什么结论?
答案
1.C 2.C 3.A 4.C 5.5% 6.A 7.有关 8.1 9.4.882 5%
10.解 由公式得
χ2=
=
≈0.08.
∵χ2<3.841.
∴我们没有理由说教龄的长短与支持新的数学教材有关.
11.解 根据题意,列出2×2列联表如下:
晕机
不晕机
合计
男乘客
24
31
55
女乘客
8
26
34
合计
32
57
89
由公式可得
χ2=≈3.689<3.841,
故我们没有理由认为“在天气恶劣的飞行航程中,男乘客比女乘客更容易晕机”.
12.解 (1)列联表如下:
休闲方式
性别
看电视
运动
合计
女
43
27
70
男
21
33
54
合计
64
60
124
(2)χ2=≈6.201,
∵χ2>3.841且χ2<6.635.
∴有95%的把握认为性别与休闲方式有关.
13.解 χ2=≈1.78.
因为1.78<3.841,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.
- 07-17高中数学选修1-1作业:3.3.2函数的极值与导数(含答案)
- 07-15高中数学选修1-1课时提升作业 简单的逻辑联结词Word版含答案
- 07-15高中数学选修1-2模块综合测评Word版含解析
- 07-15高中数学选修1-1学业分层测评5 全称量词与存在量词(3课时) Word版含解析
- 07-15高中数学选修1-1作业:1.1.2四种命题(含答案)
- 07-15高中数学必修1课时提升作业(十二)
- 07-15高中数学选修1-2课时跟踪检测(十一) 流程图 Word版含解析
- 07-14高中数学选修1-1课时自测2.2.2 双曲线的简单几何性质 第1课时 双曲线的简单几何性质Word版含答案
- 07-12高中数学选修1-2课时提升作业一 1.回归分析的基本思想及其初步应用 习题 Word版含答案
- 07-12高中数学选修1-2学业分层测评3 合情推理 Word版含解析