习作分享 好教案logo
首页 高二 高中数学必修3配套课时作业:第三章 概率 3.1.2 Word版含答案

本文由 436638 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修3配套课时作业:第三章 概率 3.1.2 Word版含答案

  • 资源类别:高二试卷
  • 所属教版:高二上册数学人教版
  • 文件格式:ppt/doc
  • 大小:220k
  • 浏览次数:962
  • 整理时间:2020-12-23
  • 3.1.2 概率的意义
    课时目标 1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律.
    1.对概率的正确理解
    随机事件在一次试验中发生与否是随机的,但随机性中含有________,认识了这种随机性中的________,就能比较准确地预测随机事件发生的________.
    2.游戏的公平性
    (1)裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为______,所以这个规则是______的.
    (2)在设计某种游戏规则时,一定要考虑这种规则对每个人都是______的这一重要原则.
    3.决策中的概率思想
    如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“_____________”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一.
    4.天气预报的概率解释
    天气预报的“降水”是一个________,“降水概率为90%”指明了“降水”这个随机事件发生的______为90%,在一次试验中,概率为90%的事件也________,因此,“昨天没有下雨”并不能说明“昨天的降水概率为90%”的天气预报是______的.
    5.孟德尔与遗传机理中的统计规律
    孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.
    一、选择题
    1.某气象局预报说,明天本地降雪的概率为90%,下列解释正确的是(  )
    A.明天本地有90%的区域下雪,10%的区域不下雪.
    B.明天本地下雪的可能性是90%.
    C.明天本地全天有90%的时间下雪,10%的时间不下雪.
    D.明天本地一定下雪.
    2.已知某厂的产品合格率为90%,现抽出10件产品检查,则下列说法正确的是(  )
    A.合格产品少于9件
    B.合格产品多于9件
    C.合格产品正好是9件
    D.合格产品可能是9件
    3.每道选择题有4个选择项,其中只有1个选择项是正确的,某次考试共有12道选择题,某人说:“每个选择项正确的概率是,我每题都选择第一个选择项,则一定有3道题选择结果正确”,这句话(  )
    A.正确B.错误
    C.不一定D.无法解释
    4.同时向上抛掷100个质量均匀的铜板,落地时这100个铜板全都正面向上,则这100个铜板更可能是下面哪种情况(  )
    A.这100个铜板两面是一样的
    B.这100个铜板两面是不一样的
    C.这100个铜板中有50个两面是一样的,另外50个两面是不一样的
    D.这100个铜板中有20个两面是一样的,另外80个两面是不一样的
    5.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理(  )
    A.甲公司B.乙公司
    C.甲与乙公司D.以上都对
    6.从12个同类产品(其中10个正品,2个次品),任意抽取6件产品,下列说法中正确的是(  )
    A.抽出的6件产品中必有5件正品,一件次品
    B.抽出的6件产品中可能有5件正品,一件次品
    C.抽取6件产品时逐个不放回抽取,前5件是正品,第6件必是次品
    D.抽取6件产品时,不可能抽得5件正品,一件次品
    题 号
    1
    2
    3
    4
    5
    6
    答 案
    二、填空题
    7.盒中装有4只白球5只黑球,从中任意取出1只球.
    (1)“取出的球是黄球”是________事件,它的概率是________;
    (2)“取出的球是白球”是________事件,它的概率是________;
    (3)“取出的球是白球或黑球”是________事件,它的概率是________.
    8.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有________条鱼.
    9.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):
    492 496 494 495 498
    497 501 502 504 496
    497 503 506 508 507
    492 496 500 501 499
    根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为________.
    三、解答题
    10.解释下列概率的含义:
    (1)某厂生产产品合格的概率为0.9;
    (2)一次抽奖活动中,中奖的概率为0.2.
    11.在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计具有(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.
    能力提升
    12.掷一枚骰子得到6点的概率是,是否意味着把它掷6次一定能得到一次6点?
    13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:
    (1)这种鱼卵的孵化概率(孵化率)是多少?
    (2)30 000个鱼卵大约能孵化多少尾鱼苗?
    (3)要孵化5 000尾鱼苗,大概需备多少个鱼卵?(精确到百位)
    1.事件A发生的概率P(A)=,在实际生活中并不意味着n次试验中,事件A一定发生m次,有可能多于m次,也有可能少于m次,甚至有可能不发生或发生n次.
    2.大概率事件经常发生,小概率事件很少发生.反之,一次试验中已发生了的事件其概率也必然很大,利用这一点可以推断事情的发展趋势,做出正确的决策.
    3.概率广泛应用于体育运动、管理决策、天气预报以及某些科学实验中,它在这些应用中起着极其重要的作用.
    答案:
    3.1.2 概率的意义
    知识梳理
    1.规律性 规律性 可能性 2.(1)0.5 公平
    (2)公平 3.使得样本出现的可能性最大 4.随机事件 概率 可能不出现 错误
    作业设计
    1.B [概率的本质是从数量上反映一个事件发生的可能性的大小.]
    2.D
    3.B [解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是.做12道选择题,即进行12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3道题选择结果正确的可能性比较大.同时也有可能都选错,或有2道题,4道题,甚至12道题都选择正确.故这句话是错误的.]
    4.A [一枚质量均匀的铜板,抛掷一次正面向上的概率为0.5,从题意中知抛掷100枚结果正面都向上,因此这100个铜板两面是一样的可能性最大.]
    5.B [由于甲公司桑塔纳的比例为=,
    乙公司桑塔纳的比例为=,根据极大似然法可知应选B.]
    6.B
    7.(1)不可能 0 (2)随机  (3)必然 1
    8.750
    解析 设池塘约有n条鱼,则含有标记的鱼的概率为,由题意得:×50=2,∴n=750.
    9.0.25
    解析 袋装食盐质量在497.5 g~501.5 g之间的共有5袋,所以其概率约为=0.25.
    10.解 (1)说明该厂产品合格的可能性为90%.也就是说每100件该厂的产品中大约有90件是合格品.
    (2)说明参加抽奖的人中有20%的人可能中奖,也就是说,若有100个人参加抽奖,约有20人中奖.
    11.解 (1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,∴P(A)=0.
    (2)记“椭圆形细胞的豚鼠被感染”为事件B,
    由题意知P(B)===0.2.
    (3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.
    12.解 抛掷一枚骰子得到6点的概率是,多次抛掷骰子,出现6点的情况大约占,并不意味着掷6次一定得到一次6点,实际上,掷6次作为抛掷骰子的6次试验,每一次结果都是随机的.
    13.解 (1)这种鱼卵的孵化概率
    P==0.851 3.
    (2)30 000个鱼卵大约能孵化
    30 000×=25 539(尾)鱼苗.
    (3)设大概需备x个鱼卵,
    由题意知=.
    ∴x==5 900(个).
    ∴大概需备5 900个鱼卵.
    标签
    436638

    436638

    0

    0

    0

    标签云

    img

    高中数学必修3配套课时作业:第三章 概率 3.1.2 Word版含答案

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!