习作分享 好教案logo
首页 高一 高中数学(人教版必修2)配套练习 第二章2.2.1

本文由 weixl1988 收集发布,转载请注明出处,如有问题请联系我们!高中数学(人教版必修2)配套练习 第二章2.2.1

  • 资源类别:高一试卷
  • 所属教版:高一下册数学人教版
  • 文件格式:ppt/doc
  • 大小:87k
  • 浏览次数:1288
  • 整理时间:2020-12-10
  • 2.2 直线、平面平行的判定及其性质
    2.2.1 直线与平面平行的判定
    一、基础过关
    1.直线m∥平面α,直线n∥m,则 (  )
    A.n∥α B.n与α相交
    C.n⊂α D.n∥α或n⊂α
    2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是 (  )
    A.平行 B.相交
    C.平行或相交 D.不相交
    3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是 (  )
    A.b∥α B.b与α相交
    C.b⊂α D.b∥α或b与α相交
    4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 (  )
    A.l∥α B.l⊥α
    C.l与α相交但不垂直 D.l∥α或l⊂α
    5. 如图,在长方体ABCD-A1B1C1D1的面中:
    (1)与直线AB平行的平面是______;
    (2)与直线AA1平行的平面是______;
    (3)与直线AD平行的平面是______.
    6.已知不重合的直线a,b和平面α.
    ①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.
    7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.
    8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.
    二、能力提升
    9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是 (  )
    A.平行 B.相交
    C.在内 D.不能确定
    10.过直线l外两点,作与l平行的平面,则这样的平面 (  )
    A.不存在 B.只能作出一个
    C.能作出无数个 D.以上都有可能
    11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.
    12. 如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.
    三、探究与拓展
    13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)
    答案
    1.D 2.B 3.D 4.D 
    5.(1)平面A1C1和平面DC1 (2)平面BC1和平面DC1 (3)平面B1C和平面A1C1
    6.1
    7.证明 如图,连接BD交AC于F,连接EF.
    因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.
    在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.
    又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.
    8.证明 连接OF,
    ∵O为正方形DBCE对角线的交点,∴BO=OE,
    又AF=FE,
    ∴AB∥OF,
    ⇒AB∥平面DCF.
    9.A 10.D 11.12
    12.证明 取A′D的中点G,连接GF,GE,
    由条件易知FG∥CD,FG=CD,BE∥CD,BE=CD,
    所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,
    所以BF∥EG.因为EG⊂平面A′DE,
    BF⊄平面A′DE,
    所以BF∥平面A′DE.
    13.证明 如图所示,连接AQ并延长交BC于K,连接EK.
    ∵KB∥AD,∴=.
    ∵AP=DQ,AE=BD,
    ∴BQ=PE.
    ∴=.∴=.∴PQ∥EK.
    又PQ⊄平面BCE,EK⊂平面BCE,
    ∴PQ∥平面BCE.
    标签
    weixl1988

    weixl1988

    0

    0

    0

    img

    高中数学(人教版必修2)配套练习 第二章2.2.1

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!