本文由 19851213 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修4:第27课时 两角差的余弦公式 Word版含解析
第27课时 两角差的余弦公式
课时目标
掌握两角差的余弦公式及推导,能用公式进行简单的恒等变形.
识记强化
cos(α-β)=cosαcosβ+sinαsinβ
课时作业
一、选择题
1.cos(-75°)的值是( )
A. B.
C. D.
答案:C
解析:cos(-75°)=cos(45°-120°)=cos45°·cos120°+sin45°sin120°=×+×=,故选C.
2.已知α为锐角,β为第三象限角,且cosα=,sinβ=-,则cos(α-β)的值为( )
A.- B.-
C. D.
答案:A
解析:∵α为锐角,且cosα=,∴sinα==.∵β为第三象限角,且sinβ=-,∴cosβ=-=-,∴cos(α-β)=cosαcosβ+sinαsinβ=×+×=-.故选A.
3.已知锐角α,β满足cosα=,cos(α+β)=-,则cos(2π-β)的值为( )
A. B.-
C. D.-
答案:A
解析:∵α,β为锐角,cosα=,cos(α+β)=-,∴sinα=,sin(α+β)=,∴cos(2π-β)=cosβ=cos[(α+β)-α]=cos(α+β)·cosα+sin(α+β)·sinα=-×+×=.
4.在△ABC中,若sinAsinBA.等边三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D
解析:由题意,得cosAcosB-sinAsinB>0.
即cos(A+B)>0,-cosC>0,cosC<0.
又05.已知α,β均为锐角,且cosα=,cosβ=,则α-β等于( )
A. B.-
C. D.-
答案:B
解析:因为α,β均为锐角,所以sinα=,sinβ=.
cos(α-β)=cosαcosβ+sinαsinβ=
又∵sinα∴-<α-β<0.故α-β=-.
6.若cos=,x∈,则cosx的值为( )
A. B.
C. D.
答案:A
解析:∵x∈,∴∈.
∴sin=-.
∴cosx=cos=coscos+sinsin==.
二、填空题
7.-cos(-50°)cos129°+cos400°cos39°=________.
答案:cos1°
解析:-cos(-50°)cos129°+cos400°cos39°=-sin40°·(-sin39°)+cos40°cos39°=cos(40°-39°)=cos1°.
8.已知α是第二象限角,sin=-,则cosα=________.
答案:-
解析:因为α是第二象限角,sin=-<0,所以α+是第三象限角,
所以cos=-,
所以cosα=cos=
cos+sin=-.
9.若a=(cos60°,sin60°),b=(cos15°,sin15°),则a·b=________.
答案:
解析:a·b=cos60°cos15°+sin60°sin15°=cos(60°-15°)=cos45°=.
三、解答题
10.已知sin(π-α)=,cos(α-β)=,0<β<α<,求角β的大小.
解:因为sin(π-α)=,所以sinα=.
因为0<α<,所以cosα==.
因为cos(α-β)=,且0<β<α<,所以0<α-β<,
所以sin(α-β)==.
所以cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=.
因为0<β<,
所以β=.
11.已知函数f(x)=-cos2xcos+sin2xsin.
(1)求函数f(x)的最小正周期;
(2)若<α<β<,f(α)=,且f(β)=,求角2β-2α的大小.
解:(1)因为f(x)=-cos2xcos+sin2xsin,
所以f(x)=cos2xcos+sin2xsin=cos,
所以函数f(x)的最小正周期T==π.
(2)因为f(α)=,且f(β)=,
所以cos=,
cos=.
又<α<β<,所以2α-,2β-∈,
所以sin==,sin==,
所以cos(2β-2α)
=cos
=coscos+
sinsin
=×+×=.
又<α<β<,所以0<2β-2α<,所以2β-2α=.
能力提升
12.若cos(α-β)=,cos2α=,且α、β均为锐角,α<β,则α+β的值为( )
A. B.
C. D.
答案:C
解析:∵0<α<,0<β<,α<β,∴-<α-β<0.
又cos(α-β)=,
∴sin(α-β)=-=-.
又∵0<2α<π,cos2α=,
∴sin2α==,
∴cos(α+β)=cos[2α-(α-β)]=cos2αcos(α-β)+sin2αsin(α-β)=×+×=-.
又0<α+β<π,故α+β=.
13.已知sinα+sinβ=,求cosα+cosβ的取值范围.
解:由sinα+sinβ=,平方得,
sin2α+2sinαsinβ+sin2β=, ①
设cosα+cosβ=m,平方得,
cos2α+2cosαcosβ+cos2β=m2, ②
由①+②,得sin2α+2sinαsinβ+sin2β+cos2α+2cosαcosβ+cos2β=m2+,
整理得,m2=+2cos(α-β).
又由于cos(α-β)∈[-1,1],m2>0,
所以0≤m2≤,解得-≤m≤.
∴cosα+cosβ的取值范围是.
课时目标
掌握两角差的余弦公式及推导,能用公式进行简单的恒等变形.
识记强化
cos(α-β)=cosαcosβ+sinαsinβ
课时作业
一、选择题
1.cos(-75°)的值是( )
A. B.
C. D.
答案:C
解析:cos(-75°)=cos(45°-120°)=cos45°·cos120°+sin45°sin120°=×+×=,故选C.
2.已知α为锐角,β为第三象限角,且cosα=,sinβ=-,则cos(α-β)的值为( )
A.- B.-
C. D.
答案:A
解析:∵α为锐角,且cosα=,∴sinα==.∵β为第三象限角,且sinβ=-,∴cosβ=-=-,∴cos(α-β)=cosαcosβ+sinαsinβ=×+×=-.故选A.
3.已知锐角α,β满足cosα=,cos(α+β)=-,则cos(2π-β)的值为( )
A. B.-
C. D.-
答案:A
解析:∵α,β为锐角,cosα=,cos(α+β)=-,∴sinα=,sin(α+β)=,∴cos(2π-β)=cosβ=cos[(α+β)-α]=cos(α+β)·cosα+sin(α+β)·sinα=-×+×=.
4.在△ABC中,若sinAsinB
C.锐角三角形 D.钝角三角形
答案:D
解析:由题意,得cosAcosB-sinAsinB>0.
即cos(A+B)>0,-cosC>0,cosC<0.
又0
A. B.-
C. D.-
答案:B
解析:因为α,β均为锐角,所以sinα=,sinβ=.
cos(α-β)=cosαcosβ+sinαsinβ=
又∵sinα
6.若cos=,x∈,则cosx的值为( )
A. B.
C. D.
答案:A
解析:∵x∈,∴∈.
∴sin=-.
∴cosx=cos=coscos+sinsin==.
二、填空题
7.-cos(-50°)cos129°+cos400°cos39°=________.
答案:cos1°
解析:-cos(-50°)cos129°+cos400°cos39°=-sin40°·(-sin39°)+cos40°cos39°=cos(40°-39°)=cos1°.
8.已知α是第二象限角,sin=-,则cosα=________.
答案:-
解析:因为α是第二象限角,sin=-<0,所以α+是第三象限角,
所以cos=-,
所以cosα=cos=
cos+sin=-.
9.若a=(cos60°,sin60°),b=(cos15°,sin15°),则a·b=________.
答案:
解析:a·b=cos60°cos15°+sin60°sin15°=cos(60°-15°)=cos45°=.
三、解答题
10.已知sin(π-α)=,cos(α-β)=,0<β<α<,求角β的大小.
解:因为sin(π-α)=,所以sinα=.
因为0<α<,所以cosα==.
因为cos(α-β)=,且0<β<α<,所以0<α-β<,
所以sin(α-β)==.
所以cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=.
因为0<β<,
所以β=.
11.已知函数f(x)=-cos2xcos+sin2xsin.
(1)求函数f(x)的最小正周期;
(2)若<α<β<,f(α)=,且f(β)=,求角2β-2α的大小.
解:(1)因为f(x)=-cos2xcos+sin2xsin,
所以f(x)=cos2xcos+sin2xsin=cos,
所以函数f(x)的最小正周期T==π.
(2)因为f(α)=,且f(β)=,
所以cos=,
cos=.
又<α<β<,所以2α-,2β-∈,
所以sin==,sin==,
所以cos(2β-2α)
=cos
=coscos+
sinsin
=×+×=.
又<α<β<,所以0<2β-2α<,所以2β-2α=.
能力提升
12.若cos(α-β)=,cos2α=,且α、β均为锐角,α<β,则α+β的值为( )
A. B.
C. D.
答案:C
解析:∵0<α<,0<β<,α<β,∴-<α-β<0.
又cos(α-β)=,
∴sin(α-β)=-=-.
又∵0<2α<π,cos2α=,
∴sin2α==,
∴cos(α+β)=cos[2α-(α-β)]=cos2αcos(α-β)+sin2αsin(α-β)=×+×=-.
又0<α+β<π,故α+β=.
13.已知sinα+sinβ=,求cosα+cosβ的取值范围.
解:由sinα+sinβ=,平方得,
sin2α+2sinαsinβ+sin2β=, ①
设cosα+cosβ=m,平方得,
cos2α+2cosαcosβ+cos2β=m2, ②
由①+②,得sin2α+2sinαsinβ+sin2β+cos2α+2cosαcosβ+cos2β=m2+,
整理得,m2=+2cos(α-β).
又由于cos(α-β)∈[-1,1],m2>0,
所以0≤m2≤,解得-≤m≤.
∴cosα+cosβ的取值范围是.
- 04-28高中数学选修2-2预习导航 直接证明与间接证明(第1课时) Word版含解析
- 04-27高中数学人教A版必修三 章末综合测评2 Word版含答案
- 04-26高中数学必修4模块综合检测(一) Word版含解析
- 04-23高中数学选修2-2课时作业:第一章 导数及其应用1.1.3导数的几何意义 Word版含解析
- 04-23高中数学必修四课时训练 函数y=Asin(ωx+φ)的图象 1.5(一) Word版含答案
- 04-23高中数学必修4:第二章 章末检测 Word版含解析
- 04-23高中数学选修2-3练习:第一章1.1第1课时分类加法计数原理与分步乘法计数原理 Word版含解析
- 04-21高中数学必修四课时训练 平面向量的数量积 2.4.1 Word版含答案
- 04-21高中数学选修2-3 第一章 计数原理 1.2-1.2.1-第2课时学业分层测评 Word版含答案
- 04-21高中数学必修四课时训练 三角函数的诱导公式 1.3(一) Word版含答案