本文由 gzhiji 收集发布,转载请注明出处,如有问题请联系我们!高二下册数学1.3 导数的几何意义
3.1.3 导数的几何意义
【学情分析】:
上一节课已经学习了导数定义,以及运用导数的定义来求导数。
【教学目标】:
1.了解曲线的切线的概念
2.掌握用割线的极限位置上的直线来定义切线的方法.
3.并会求一曲线在具体一点处的切线的斜率与切线方程
【教学重点】:
理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.导数的几何意义及“数形结合,以直代曲”的思想方法.
【教学难点】:
发现、理解及应用导数的几何意义,会求一条具体的曲线在某一点处的切线斜率.
【教学过程设计】:
教学环节
教学活动
设计意图
一、曲线的切线及切线的斜率:
圆与圆锥曲线的切线定义:与曲线只有一个公共点并且位于曲线一边的直线叫切线。
曲线的切线
如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
问题:⑴割线的斜率与切线PT的斜率有什么关系?
⑵切线PT的斜率为多少?
容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即
说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
为课题引入作铺垫.
二、导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
③利用点斜式求切线方程.
指导学生理解导数的几何意义,可以讨论
三、导函数
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
函数在点处的导数、导函数、导数 之间的区别与联系。
1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
四、典例分析
例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
(2)求函数y=3x2在点处的导数.
解:(1),
所以,所求切线的斜率为2,因此,所求的切线方程为即
(2)因为
所以,所求切线的斜率为6,因此,所求的切线方程为即
例2、求曲线f(x)=x3-x2+5在x=1处的切线的倾斜角.
分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k=tana,求出倾斜角a.
解:∵tana=
∵a∈[0,π,∴a=π.
∴切线的倾斜角为π.
例3.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
,根据图像,请描述、比较曲线在、、附近的变化情况.
解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
(1)当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.
例4.(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,则它的斜率为:
所以
下表给出了药物浓度瞬时变化率的估计值:
0.2
0.4
0.6
0.8
药物浓度瞬时变化率
0.4
0
-0.7
-1.4
通过例子,更深入理解导数的概念
五、课堂小结
导数的几何意义,怎么求曲线的切线。
补充题目:
1.导数的本质是什么?请写数学表达式。导数的本质是函数在 处的 即:
2.函数平均变化率的几何意义是什么,请在函数图像中画出来。
3.导数的几何意义是什么?导数的几何意义是
4.在函数的图像上,(1)用图形来体现导数,
的几何意义,并用数学语言表述出来。(2)请描述、比较曲线在.
附近增(减)以及增(减)快慢的情况。在附近呢?
(说明:要求学生动脑(审题),动手(画切线),动口(讨论、描述运动员的运动状态),体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)
5.如图表示人体血管中的药物浓度(单位:)随时间(单位:)变化的函数图像,根据图像,估计(min)时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。(精确到0.1)
0.2
0.4
0.6
0.8
药物浓度的
瞬时变化率
(说明:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)
(以上几题可以让学生在课堂上完成)
6. 求下列曲线在指定点处的切线斜率.
(1)y=-+2, x=2处 (2)y=,x=0处.
答案:(1)k=-12,(2)k=-1
7.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程.
解:(1)k=
∴点A处的切线的斜率为4.
(2)点A处的切线方程是y-2=4(x-1)即y=4x-2
8.求曲线y=x2+1在点P(-2,5)处的切线方程.
解:k=
∴切线方程是y-5=-4(x+2),即y=-4x-3.
【学情分析】:
上一节课已经学习了导数定义,以及运用导数的定义来求导数。
【教学目标】:
1.了解曲线的切线的概念
2.掌握用割线的极限位置上的直线来定义切线的方法.
3.并会求一曲线在具体一点处的切线的斜率与切线方程
【教学重点】:
理解曲线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义.光滑曲线的切线斜率是了解导数概念的实际背景.导数的几何意义及“数形结合,以直代曲”的思想方法.
【教学难点】:
发现、理解及应用导数的几何意义,会求一条具体的曲线在某一点处的切线斜率.
【教学过程设计】:
教学环节
教学活动
设计意图
一、曲线的切线及切线的斜率:
圆与圆锥曲线的切线定义:与曲线只有一个公共点并且位于曲线一边的直线叫切线。
曲线的切线
如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
问题:⑴割线的斜率与切线PT的斜率有什么关系?
⑵切线PT的斜率为多少?
容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即
说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
为课题引入作铺垫.
二、导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
③利用点斜式求切线方程.
指导学生理解导数的几何意义,可以讨论
三、导函数
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
函数在点处的导数、导函数、导数 之间的区别与联系。
1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
四、典例分析
例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
(2)求函数y=3x2在点处的导数.
解:(1),
所以,所求切线的斜率为2,因此,所求的切线方程为即
(2)因为
所以,所求切线的斜率为6,因此,所求的切线方程为即
例2、求曲线f(x)=x3-x2+5在x=1处的切线的倾斜角.
分析:要求切线的倾斜角,也要先求切线的斜率,再根据斜率k=tana,求出倾斜角a.
解:∵tana=
∵a∈[0,π,∴a=π.
∴切线的倾斜角为π.
例3.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
,根据图像,请描述、比较曲线在、、附近的变化情况.
解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
(1)当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.
例4.(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,则它的斜率为:
所以
下表给出了药物浓度瞬时变化率的估计值:
0.2
0.4
0.6
0.8
药物浓度瞬时变化率
0.4
0
-0.7
-1.4
通过例子,更深入理解导数的概念
五、课堂小结
导数的几何意义,怎么求曲线的切线。
补充题目:
1.导数的本质是什么?请写数学表达式。导数的本质是函数在 处的 即:
2.函数平均变化率的几何意义是什么,请在函数图像中画出来。
3.导数的几何意义是什么?导数的几何意义是
4.在函数的图像上,(1)用图形来体现导数,
的几何意义,并用数学语言表述出来。(2)请描述、比较曲线在.
附近增(减)以及增(减)快慢的情况。在附近呢?
(说明:要求学生动脑(审题),动手(画切线),动口(讨论、描述运动员的运动状态),体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)
5.如图表示人体血管中的药物浓度(单位:)随时间(单位:)变化的函数图像,根据图像,估计(min)时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。(精确到0.1)
0.2
0.4
0.6
0.8
药物浓度的
瞬时变化率
(说明:要求学生动脑(审题),动手(画切线),动口(说出如何估计切线斜率),进一步体会利用导数的几何意义解释实际问题,渗透“数形结合”、“以直代曲”的思想方法。)
(以上几题可以让学生在课堂上完成)
6. 求下列曲线在指定点处的切线斜率.
(1)y=-+2, x=2处 (2)y=,x=0处.
答案:(1)k=-12,(2)k=-1
7.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程.
解:(1)k=
∴点A处的切线的斜率为4.
(2)点A处的切线方程是y-2=4(x-1)即y=4x-2
8.求曲线y=x2+1在点P(-2,5)处的切线方程.
解:k=
∴切线方程是y-5=-4(x+2),即y=-4x-3.
- 01-18高中数学教案选修2-2《函数的和、差、积、商的导数》
- 01-18高二上册数学3.2立体几何中的向量方法第5课时
- 01-14高一数学人教A版必修四教案:2.2.2 向量减法及其几何意义 Word版含答案
- 01-14高一数学人教A版必修四教案:2.4.1 平面向量数量积的物理背景及其含义 Word版含答案
- 01-13高二数学精品教案 离散型随机变量的期望与方差(二)(选修2-3)
- 01-13高二数学教案:第二章 圆锥曲线与方程 2.4~10《抛物线的几何性质》(人教A版选修2-1)
- 01-12高中数学教案选修2-2《瞬时变化率――导数(3)》
- 01-12高二数学精品教案 正态分布(二)(选修2-3)
- 01-11高中数学教案选修2-2《合情推理(2)》
- 01-11高中数学教案必修三:2.2.1 频率分布表