本文由 xkw0054 收集发布,转载请注明出处,如有问题请联系我们!高二上册数学3.2立体几何中的向量方法第5课时
3.2.5 综合问题
【学情分析】:
教学对象是高二的学生,学生已经具备空间向量与立方体几何的相关知识,前面已经运用向量解决了一些立体几何问题,本节课是进一步通过坐标与向量来解决立体几何的一些综合问题。由此我们可以继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性。
【教学目标】:
(1)知识与技能:进一步体会空间向量在解决立体几何问题中的广泛作用,再次熟悉立体几何中的向量方法“三步曲”;继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性;对立体几何中的三种方法(综合法、向量法、坐标法)的联系进行分析与小结.
(2)过程与方法:在解决问题中,通过数形结合与问题转化的思想方法,加深对相关内容的理解。
(3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。
【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线.
【课前准备】:Powerpoint课件
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习引入
教师引导学生结合前面的例题从整体上归纳解题过程,留给学生一定时间,使其通过思考能明确认识“三步曲”各阶段的主要任务,并能简明地叙述出来,为对本节后续内容的整体把握作准备坐标法。
立体几何中的向量方法可以归纳为三步:( l )把几何问题转化为向量问题;( 2 )进行向量运算;〔 3 )由向量运算解释几何问题。
有助于加强学生对解题通法的整体认识.
二、问题与探究
一、问题探究
问题1 :阅读课本上的例4 ,请你找出其中的已知条件和求解问题.这些求解问题能用向量方法解决吗?
学生独立阅读并分析题意,教师引导学生认识到本题具有一定的综合性,需要证明直线与平面平行、垂直和计算二面角,而这些问题都可以利用向量解决.
问题2 :从例4 的已知条件和求解问题看,你认为应怎样把问题向量化?如果建立坐标系,应怎样建立?
教师引导学生关注己知条件中有“三条线段两两垂直且彼此相等”这一条件,使学生由此联想到选择这些线段所在直线为坐标轴、以线段长(正方形边长)为单位长度建立空间直角坐标系,并意识到这是适合本题的坐标化方法.教师要求学生写出点P , A ,B,C , D , E 的坐标.并进一步写出 等的坐标.
问题3 :考虑例4 ( 1 ) ,要证PA∥平面EDB,应如何入手?
教师从“PA∥平面EDB”出发,启发学生考虑直线与平面平行的判定条件,引导学生通过讨论发现PA 与EG有平行关系,从而自然地想到写出 的坐标,并由 =k 证出PA∥EG ,进而证出PA∥平面EDB。
问题4 :考虑例4 ( 2 ) ,要证PB⊥平面EFD,应如何人手?
教师从“PB⊥平面EFD出发”,启发学生考虑直线与平而垂直的判定条件,让学生讨论:应证明PB 与哪些线段垂直,用向量方法怎样证?
在讨论的基础上,由学生自己写出主要证明过程,即PB⊥EF(已知)
· =0, ⊥ ,
PB⊥DE PB⊥平面EFD
问题5 :考虑例4( 3 ) ,求二面角C-PB-D的大小,应如何人手?
教师从“计算二面角C 一PB 一D 的大小”出发,启发学生如何找出相应的平面角,让学生讨论:哪个角是二面角C 一PB 一D 的平面角,用向量方法怎样计算它的大小?
教师引导学生考虑:点F 的坐标对计算是否垂要?怎样利用题中条件确定点F 的坐标?
让学生通过讨论写出确定点F 坐标的过程,再进一步考虑并表达通过cos ∠EFD= 计算∠EFD 的过程
问题6 :考虑例4 后的思考题.
学生结合刚讨论过的例题,对思考题进行思考和讨沦,教师适当点拨引导.注意不要就题论题,而要透过例题看到解题中的基本想法.
二、问题解答
解:如课本图所示建立空间直角坐标系,点D为坐标原点,设DC=1
(1)证明:连结AC,AC交BD于点G,连结EG
三、小结立体几何中的不同方法.
教师引导学生进行归纳,了解各种方法的特点及联系,认识到应根据问题的条件选择合适的方法,而不是生搬硬套.
通过阅读题目,使学生明确题中所给出的条件和求解的问题,从需要完成的任务理出本题可以用向最解决的大体思路.
初步建立已知条件与求解内容两者间的联系,使学生意识到通过把向量坐标化解决问题,培养他们结合题中条件建立适当坐标系的能力.
找出这条直线的过程可以锻炼直觉观察能力;证明两线平行可以巩固对直线的方向向量、共线向量等概念的理解.
找出这两条直线的过程可以锻炼分析已知条件以及看图能力;证明直线间的垂直关系的过程可以巩固对两非零向量的 “数量积为0 ”的几何意义的认识。
计算二面角的大小,首先要找出其平面角,转而计算平面角的大小.计算角的大小时,向量是非常有力的工具.解决这个问题可以巩固对运用向量方法求角度的掌握.
思考题1 可以使学生进一步体会向量方法中坐标化对简化计算所起的作用.思考题2 可以加强不同方法之间的联系.
加深对不同方法(综合法、向量法、坐标法)的特点和联系的认识.
三、拓展与提高
1,练习题3 。
(解略)
2,如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。
解:(I)略
(II)以O为原点,如图建立
空间直角坐标系,则
异面直线AB与CD所成角的余弦值为
(III)设平面ACD的法向量为则
令得是平面ACD的一个法向量,又
点E到平面ACD的距离
学生进行提高训练应用.
四、小结
解决立体几何问题的三种方法:
1,综合方法;
2,向量方法;
3,坐标方法。
反思归纳
五、作业
习题3.2 A 组9、10、 12 题;选作B 组2 , 3 题
练习与测试:
(基础题)
1,过正方形的顶点,引⊥平面,若,
则平面和平面所成的二面角的大小是( )
A. B. C. D.
答:B
2,设P是的二面角内一点,AB为垂足,则AB的长为 ( )
A. B. C . D.
答:C
3,如下图,已知空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且分MN所成的定比为2,现用基向量、、表示向量,设=x+y+z,则x、y、z的值分别为
A.x=,y=,z=
B.x=,y=,z=
C.x=,y=,z=
D.x=,y=,z=
解析:=-,=-,
=(+)=+-,
=-=+-,
==-++,
=+=+ +.
答案:D
4.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是
A.相交 B.平行
C.垂直 D.不能确定
解析:因为正方体的棱长为a,故面对角线A1B=AC=a.而A1M=AN=a,所以M、N分别是A1B和AC上的三等分点.在B1B、BC上各取点E、F,使得B1E=BF=a.
则= ++.
但=-=-=(-)=,
=-=-= (-)=,
∴+= + =+=0,
∴=,即MN∥EF,
∴MN∥平面BB1C1C.
答案:B
(中等题)
5,如图,在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1,.求直线EC1与FD1所成的余弦值.
解:以分别为轴建立坐标系,则E(3,3,0)、C1(0,4,2)、
D1(0,0,2)、F(2,4,0).从而=(-3,1,2)、=
(-2,-4,2)
所以直线EC1与FD1所成的余弦值为
==
6,在直三棱柱中,底面是等腰直角三角形,,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离.
解:建立如图的空间直角坐标系,设,
则,,,,
∵分别是,与的中点,
∴,∵是的重心,
,∴,,
,∵平面,
得,且与平面所成角,,
,,
(2)是的中点,到平面的距离等于到平面的距离的两倍,
∵平面,到平面的距离等于.
小结:根据线段和平面的关系,求点到平面的距离可转化为求到平面的距离的两倍.
(难题)
7,如图,在棱长为1的正方体ABCD—A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=CD,H为C1G的中点,应用空间向量的运算方法解决下列问题.
(1)求证:EF⊥B1C;
(2)求EF与C1G所成的角的余弦;
(3)求FH的长.
分析:本题主要利用空间向量的基础知识,证明异面直线垂直,求异面直线所成的角及线段的长度.
解:如图建立空间直角坐标系O-xyz,D为坐标原点O,依据已知有E(0,0,),F(,,0),
C(0,1,0),C1(0,1,1),B1(1,1,1),G(0,,0)
(1)证明:=(,,0)-(0,0,)=(,,-),
=(0,1,0)-(1,1,1)=(-1,0,-1),
由
·=×(-1)+×0+(-)×(-1)=0,
得⊥,
∴EF⊥B1C.
(2)解:=(0,,0)-(0,1,1)=(0,-,-1),||= =,
由(1)得||==,
且·=×0+×(-)+(-)×(-1)=,
∴cos〈,〉==.
(3)解:∵H是C1G的中点,
∴H(,,),即(0,,).
又F(,,0),
∴FH=||==.
8,已知正四棱柱,点为的中点,点为的中点,
(1)证明:为异面直线的公垂线;
(2)求点到平面的距离.
解:(1)以分别为轴建立坐标系,
则,,,,
,,,
∴,
∴为异面直线的公垂线.
(2)设是平面的法向量,∵,
∴,,,
点到平面的距离
【学情分析】:
教学对象是高二的学生,学生已经具备空间向量与立方体几何的相关知识,前面已经运用向量解决了一些立体几何问题,本节课是进一步通过坐标与向量来解决立体几何的一些综合问题。由此我们可以继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性。
【教学目标】:
(1)知识与技能:进一步体会空间向量在解决立体几何问题中的广泛作用,再次熟悉立体几何中的向量方法“三步曲”;继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性;对立体几何中的三种方法(综合法、向量法、坐标法)的联系进行分析与小结.
(2)过程与方法:在解决问题中,通过数形结合与问题转化的思想方法,加深对相关内容的理解。
(3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。
【教学重点】:坐标法与向量法结合.
【教学难点】:适当地建立空间直角坐标系及添加辅助线.
【课前准备】:Powerpoint课件
【教学过程设计】:
教学环节
教学活动
设计意图
一、复习引入
教师引导学生结合前面的例题从整体上归纳解题过程,留给学生一定时间,使其通过思考能明确认识“三步曲”各阶段的主要任务,并能简明地叙述出来,为对本节后续内容的整体把握作准备坐标法。
立体几何中的向量方法可以归纳为三步:( l )把几何问题转化为向量问题;( 2 )进行向量运算;〔 3 )由向量运算解释几何问题。
有助于加强学生对解题通法的整体认识.
二、问题与探究
一、问题探究
问题1 :阅读课本上的例4 ,请你找出其中的已知条件和求解问题.这些求解问题能用向量方法解决吗?
学生独立阅读并分析题意,教师引导学生认识到本题具有一定的综合性,需要证明直线与平面平行、垂直和计算二面角,而这些问题都可以利用向量解决.
问题2 :从例4 的已知条件和求解问题看,你认为应怎样把问题向量化?如果建立坐标系,应怎样建立?
教师引导学生关注己知条件中有“三条线段两两垂直且彼此相等”这一条件,使学生由此联想到选择这些线段所在直线为坐标轴、以线段长(正方形边长)为单位长度建立空间直角坐标系,并意识到这是适合本题的坐标化方法.教师要求学生写出点P , A ,B,C , D , E 的坐标.并进一步写出 等的坐标.
问题3 :考虑例4 ( 1 ) ,要证PA∥平面EDB,应如何入手?
教师从“PA∥平面EDB”出发,启发学生考虑直线与平面平行的判定条件,引导学生通过讨论发现PA 与EG有平行关系,从而自然地想到写出 的坐标,并由 =k 证出PA∥EG ,进而证出PA∥平面EDB。
问题4 :考虑例4 ( 2 ) ,要证PB⊥平面EFD,应如何人手?
教师从“PB⊥平面EFD出发”,启发学生考虑直线与平而垂直的判定条件,让学生讨论:应证明PB 与哪些线段垂直,用向量方法怎样证?
在讨论的基础上,由学生自己写出主要证明过程,即PB⊥EF(已知)
· =0, ⊥ ,
PB⊥DE PB⊥平面EFD
问题5 :考虑例4( 3 ) ,求二面角C-PB-D的大小,应如何人手?
教师从“计算二面角C 一PB 一D 的大小”出发,启发学生如何找出相应的平面角,让学生讨论:哪个角是二面角C 一PB 一D 的平面角,用向量方法怎样计算它的大小?
教师引导学生考虑:点F 的坐标对计算是否垂要?怎样利用题中条件确定点F 的坐标?
让学生通过讨论写出确定点F 坐标的过程,再进一步考虑并表达通过cos ∠EFD= 计算∠EFD 的过程
问题6 :考虑例4 后的思考题.
学生结合刚讨论过的例题,对思考题进行思考和讨沦,教师适当点拨引导.注意不要就题论题,而要透过例题看到解题中的基本想法.
二、问题解答
解:如课本图所示建立空间直角坐标系,点D为坐标原点,设DC=1
(1)证明:连结AC,AC交BD于点G,连结EG
三、小结立体几何中的不同方法.
教师引导学生进行归纳,了解各种方法的特点及联系,认识到应根据问题的条件选择合适的方法,而不是生搬硬套.
通过阅读题目,使学生明确题中所给出的条件和求解的问题,从需要完成的任务理出本题可以用向最解决的大体思路.
初步建立已知条件与求解内容两者间的联系,使学生意识到通过把向量坐标化解决问题,培养他们结合题中条件建立适当坐标系的能力.
找出这条直线的过程可以锻炼直觉观察能力;证明两线平行可以巩固对直线的方向向量、共线向量等概念的理解.
找出这两条直线的过程可以锻炼分析已知条件以及看图能力;证明直线间的垂直关系的过程可以巩固对两非零向量的 “数量积为0 ”的几何意义的认识。
计算二面角的大小,首先要找出其平面角,转而计算平面角的大小.计算角的大小时,向量是非常有力的工具.解决这个问题可以巩固对运用向量方法求角度的掌握.
思考题1 可以使学生进一步体会向量方法中坐标化对简化计算所起的作用.思考题2 可以加强不同方法之间的联系.
加深对不同方法(综合法、向量法、坐标法)的特点和联系的认识.
三、拓展与提高
1,练习题3 。
(解略)
2,如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的余弦值;
(III)求点E到平面ACD的距离。
解:(I)略
(II)以O为原点,如图建立
空间直角坐标系,则
异面直线AB与CD所成角的余弦值为
(III)设平面ACD的法向量为则
令得是平面ACD的一个法向量,又
点E到平面ACD的距离
学生进行提高训练应用.
四、小结
解决立体几何问题的三种方法:
1,综合方法;
2,向量方法;
3,坐标方法。
反思归纳
五、作业
习题3.2 A 组9、10、 12 题;选作B 组2 , 3 题
练习与测试:
(基础题)
1,过正方形的顶点,引⊥平面,若,
则平面和平面所成的二面角的大小是( )
A. B. C. D.
答:B
2,设P是的二面角内一点,AB为垂足,则AB的长为 ( )
A. B. C . D.
答:C
3,如下图,已知空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且分MN所成的定比为2,现用基向量、、表示向量,设=x+y+z,则x、y、z的值分别为
A.x=,y=,z=
B.x=,y=,z=
C.x=,y=,z=
D.x=,y=,z=
解析:=-,=-,
=(+)=+-,
=-=+-,
==-++,
=+=+ +.
答案:D
4.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是
A.相交 B.平行
C.垂直 D.不能确定
解析:因为正方体的棱长为a,故面对角线A1B=AC=a.而A1M=AN=a,所以M、N分别是A1B和AC上的三等分点.在B1B、BC上各取点E、F,使得B1E=BF=a.
则= ++.
但=-=-=(-)=,
=-=-= (-)=,
∴+= + =+=0,
∴=,即MN∥EF,
∴MN∥平面BB1C1C.
答案:B
(中等题)
5,如图,在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1,.求直线EC1与FD1所成的余弦值.
解:以分别为轴建立坐标系,则E(3,3,0)、C1(0,4,2)、
D1(0,0,2)、F(2,4,0).从而=(-3,1,2)、=
(-2,-4,2)
所以直线EC1与FD1所成的余弦值为
==
6,在直三棱柱中,底面是等腰直角三角形,,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离.
解:建立如图的空间直角坐标系,设,
则,,,,
∵分别是,与的中点,
∴,∵是的重心,
,∴,,
,∵平面,
得,且与平面所成角,,
,,
(2)是的中点,到平面的距离等于到平面的距离的两倍,
∵平面,到平面的距离等于.
小结:根据线段和平面的关系,求点到平面的距离可转化为求到平面的距离的两倍.
(难题)
7,如图,在棱长为1的正方体ABCD—A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=CD,H为C1G的中点,应用空间向量的运算方法解决下列问题.
(1)求证:EF⊥B1C;
(2)求EF与C1G所成的角的余弦;
(3)求FH的长.
分析:本题主要利用空间向量的基础知识,证明异面直线垂直,求异面直线所成的角及线段的长度.
解:如图建立空间直角坐标系O-xyz,D为坐标原点O,依据已知有E(0,0,),F(,,0),
C(0,1,0),C1(0,1,1),B1(1,1,1),G(0,,0)
(1)证明:=(,,0)-(0,0,)=(,,-),
=(0,1,0)-(1,1,1)=(-1,0,-1),
由
·=×(-1)+×0+(-)×(-1)=0,
得⊥,
∴EF⊥B1C.
(2)解:=(0,,0)-(0,1,1)=(0,-,-1),||= =,
由(1)得||==,
且·=×0+×(-)+(-)×(-1)=,
∴cos〈,〉==.
(3)解:∵H是C1G的中点,
∴H(,,),即(0,,).
又F(,,0),
∴FH=||==.
8,已知正四棱柱,点为的中点,点为的中点,
(1)证明:为异面直线的公垂线;
(2)求点到平面的距离.
解:(1)以分别为轴建立坐标系,
则,,,,
,,,
∴,
∴为异面直线的公垂线.
(2)设是平面的法向量,∵,
∴,,,
点到平面的距离
- 01-14高一数学人教A版必修四教案:2.2.2 向量减法及其几何意义 Word版含答案
- 01-14高一数学人教A版必修四教案:2.4.1 平面向量数量积的物理背景及其含义 Word版含答案
- 01-13高二数学精品教案 离散型随机变量的期望与方差(二)(选修2-3)
- 01-13高二数学教案:第二章 圆锥曲线与方程 2.4~10《抛物线的几何性质》(人教A版选修2-1)
- 01-12高中数学教案选修2-2《瞬时变化率――导数(3)》
- 01-12高二数学精品教案 正态分布(二)(选修2-3)
- 01-11高中数学教案选修2-2《合情推理(2)》
- 01-11高中数学教案必修三:2.2.1 频率分布表
- 01-11高中数学教案必修三:1.4 算法案例(1)
- 01-08高一数学人教A版必修四教案:1.4.2 正弦、余弦函数的性质(二 Word版含答案