本文由 greenhand 收集发布,转载请注明出处,如有问题请联系我们!高一数学人教A版必修四教案:1.3 三角函数的诱导公式(二 Word版含答案
三角函数的诱导公式(二)
一、教材分析
(一)教材的地位与作用:
1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。
2、求三角函数值是三角函数中的重要问题之一。诱导公式是求三角函数值的基本方法。诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。
(二)教学重点与难点:
1、教学重点:诱导公式的推导及应用。
2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。
二、教学目标
1、知识与技能
(1)识记诱导公式.
(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
2、过程与方法
(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
3、情感态度和价值观
(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
三、教学设想
(一)、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
对于五组诱导公式的理解 :
①
②这四组诱导公式可以概括为:
总结为一句话:函数名不变,符号看象限
练习1:P27面作业1、2、3、4。
2:P25面的例2:化简
(二)、新课讲授:
1、诱导公式(五)
2、诱导公式(六)
总结为一句话:函数正变余,符号看象限
例1.将下列三角函数转化为锐角三角函数:
练习3:求下列函数值:
例2.证明:(1)
(2)
例3.化简:
解:
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习4:教材P28页7.
(三).课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
三角函数的诱导公式(三)
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
sin(p-a)=sina cos(p -a)=-cosa tan (p-a)=-tana
诱导公式(五)
诱导公式(六)
二、新课讲授:
练习1.将下列三角函数转化为锐角三角函数:
练习2:求下列函数值:
例1.证明:(1)
(2)
例2.化简:
解:
例4.
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习3:教材P28页7.
化简:
例5.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
一、教材分析
(一)教材的地位与作用:
1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。
2、求三角函数值是三角函数中的重要问题之一。诱导公式是求三角函数值的基本方法。诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。
(二)教学重点与难点:
1、教学重点:诱导公式的推导及应用。
2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。
二、教学目标
1、知识与技能
(1)识记诱导公式.
(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.
2、过程与方法
(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.
(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.
(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.
3、情感态度和价值观
(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.
(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.
三、教学设想
(一)、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
对于五组诱导公式的理解 :
①
②这四组诱导公式可以概括为:
总结为一句话:函数名不变,符号看象限
练习1:P27面作业1、2、3、4。
2:P25面的例2:化简
(二)、新课讲授:
1、诱导公式(五)
2、诱导公式(六)
总结为一句话:函数正变余,符号看象限
例1.将下列三角函数转化为锐角三角函数:
练习3:求下列函数值:
例2.证明:(1)
(2)
例3.化简:
解:
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习4:教材P28页7.
(三).课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
三角函数的诱导公式(三)
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
sin(p-a)=sina cos(p -a)=-cosa tan (p-a)=-tana
诱导公式(五)
诱导公式(六)
二、新课讲授:
练习1.将下列三角函数转化为锐角三角函数:
练习2:求下列函数值:
例1.证明:(1)
(2)
例2.化简:
解:
例4.
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习3:教材P28页7.
化简:
例5.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业: