习作分享 好教案logo
首页 高二 高中数学必修4课时达标检测(二十) 平面向量的正交分解及坐标表示 平面向量的坐标运算 Word版含解析

本文由 259574 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修4课时达标检测(二十) 平面向量的正交分解及坐标表示 平面向量的坐标运算 Word版含解析

  • 资源类别:高二试卷
  • 所属教版:高二下册数学人教版
  • 文件格式:ppt/doc
  • 大小:75k
  • 浏览次数:887
  • 整理时间:2021-03-05
  • 课时达标检测(二十) 平面向量的正交分解及坐标表示 平面向量的坐标运算
    一、选择题
    1.已知向量=(1,-2),=(-3,4),则等于(  )
    A.(-2,3)       B.(2,-3)
    C.(2,3) D.(-2,-3)
    答案:A
    2.已知a=(-5,6),b=(-3,2),c=(x,y),若a-3b+2c=0,则c等于(  )
    A.(-2,6) B.(-4,0)
    C.(7,6) D.(-2,0)
    答案:D
    3.已知a=(3,-1),b=(-1,2),若ma+nb=(10,0)(m,n∈R),则(  )
    A.m=2,n=4 B.m=3,n=-2
    C.m=4,n=2 D.m=-4,n=-2
    答案:C
    4.已知A(7,1),B(1,4),直线y=ax与线段AB交于C,且=2,则实数a等于(  )
    A.2 B.1
    C. D.
    答案:A
    5.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则向量d为(  )
    A.(2,6) B.(-2,6)
    C.(2,-6) D.(-2,-6)
    答案:D
    二、填空题
    6.已知A(2,3),B(1,4),且=(sin α,cos β),α,β∈,则α+β=________.
    答案:或-
    7.已知e1=(1,2),e2=(-2,3),a=(-1,2),试以e1,e2为基底,将a分解成λ1e1+λ2e2的形式为________.
    答案:a=e1+e2
    8.已知A(-3,0),B(0,2),O为坐标原点,点C在∠AOB内,|OC|=2,且∠AOC=.设=
    λ+ (λ∈R),则λ= ________.
    答案:
    三、解答题
    9.已知点A(-1,2),B(2,8)及=,=-,求点C,D和的坐标.
    解:设C(x1,y1),D(x2,y2).由题意可得=(x1+1,y1-2),=(3,6),=(-1-x2,2-y2),
    =(-3,-6).
    ∵=,=-,
    ∴(x1+1,y1-2)=(3,6)=(1,2),
    (-1-x2,2-y2)=-(-3,-6)=(1,2).
    则有
    解得
    ∴C,D的坐标分别为(0,4)和(-2,0),
    因此=(-2,-4).
    10.已知三点A(2,3),B(5,4),C(7,10),点P满足=+λ (λ∈R).
    (1)λ为何值时,点P在正比例函数y=x的图象上?
    (2)设点P在第三象限,求λ的取值范围.
    解:设P点坐标为(x1,y1),则=(x1-2,y1-3).
    +λ=(5-2,4-3)+λ(7-2,10-3),
    即+λ=(3+5λ,1+7λ),
    由=+λ,
    可得(x1-2,y1-3)=(3+5λ,1+7λ),
    则解得
    ∴P点的坐标是(5+5λ,4+7λ).
    (1)令5+5λ=4+7λ,得λ=,
    ∴当λ=时,P点在函数y=x的图象上.
    (2)因为点P在第三象限,∴解得λ<-1,
    ∴λ的取值范围是{λ|λ<-1}.
    11.已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示.
    (1)证明:对任意向量a,b及常数m,n,恒有f(ma+nb)=mf(a)+nf(b)成立;
    (2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;
    (3)求使f(c)=(p,q)(p,q是常数)的向量c的坐标.
    解:(1)证明:设a=(a1,a2),b=(b1,b2),
    则ma+nb=(ma1+nb1,ma2+nb2),
    ∴f(ma+nb)=(ma2+nb2,2ma2+2nb2-ma1-nb1),
    mf(a)+nf(b)=m(a2,2a2-a1)+n(b2,2b2-b1)
    =(ma2+nb2,2ma2+2nb2-ma1-nb1),
    ∴f(ma+nb)=mf(a)+nf(b)成立.
    (2)f(a)=(1,2×1-1)=(1,1),
    f(b)=(0,2×0-1)=(0,-1).
    (3)设c=(x,y),
    则f(c)=(y,2y-x)=(p,q),
    ∴y=p,2y-x=q,
    ∴x=2p-q,
    即向量c=(2p-q,p).
    标签
    259574

    259574

    0

    0

    0

    标签云

    img

    高中数学必修4课时达标检测(二十) 平面向量的正交分解及坐标表示 平面向量的坐标运算 Word版含解析

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!