习作分享 好教案logo
首页 高二 高中数学选修2-1 第三章 空间向量与立体几何 3.2第2课时 Word版含答案

本文由 008852 收集发布,转载请注明出处,如有问题请联系我们!高中数学选修2-1 第三章 空间向量与立体几何 3.2第2课时 Word版含答案

  • 资源类别:高二试卷
  • 所属教版:高二上册数学人教版
  • 文件格式:ppt/doc
  • 大小:159k
  • 浏览次数:1140
  • 整理时间:2021-02-19
  • 学业分层测评
    (建议用时:45分钟)
    [学业达标]
    一、选择题
    1.已知平面α的法向量为a=(1,2,-2),平面β的法向量为b=(-2,-4,k),若α⊥β,则k=(  )
    A.4   B.-4  
    C.5   D.-5
    【解析】 ∵α⊥β,∴a⊥b,∴a·b=-2-8-2k=0.
    ∴k=-5.
    【答案】 D
    2.在菱形ABCD中,若是平面ABCD的法向量,则以下等式中可能不成立的是(  )
    A.⊥ B.⊥
    C.⊥ D.⊥
    【解析】 由题意知PA⊥平面ABCD,所以PA与平面上的线AB,CD都垂直,A,B正确;又因为菱形的对角线互相垂直,可推得对角线BD⊥平面PAC,故PC⊥BD,C选项正确.
    【答案】 D
    3.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为(  )
    A.,-,4 B.,-,4
    C.,-2,4 D.4,,-15
    【解析】 ∵⊥,∴·=0,即3+5-2z=0,得z=4,
    又BP⊥平面ABC,∴⊥,⊥,
    则解得
    【答案】 B
    4.已知点A(1,0,0),B(0,1,0),C(0,0,1),点D满足条件:DB⊥AC,DC⊥AB,AD=BC,则点D的坐标为(  )
    A.(1,1,1)
    B.(-1,-1,-1)或
    C.
    D.(1,1,1)或
    【解析】 设D(x,y,z),则=(x,y-1,z),=(x,y,z-1),=(x-1,y,z),=(-1,0,1),=(-1,1,0),=(0,-1,1).
    又DB⊥AC⇔-x+z=0  ①,
    DC⊥AB⇔-x+y=0  ②,
    AD=BC⇔(x-1)2+y2+z2=2  ③,
    联立①②③得x=y=z=1或x=y=z=-,所以点D的坐标为(1,1,1)或.故选D.
    【答案】 D
    5.设A是空间一定点,n为空间内任一非零向量,满足条件·n=0的点M构成的图形是(  )
    A.圆 B.直线
    C.平面 D.线段
    【解析】 M构成的图形经过点A,且是以n为法向量的平面.
    【答案】 C
    二、填空题
    6.已知直线l与平面α垂直,直线l的一个方向向量u=(1,-3,z),向量v=(3,-2,1)与平面α平行,则z=________. 【导学号:18490112】
    【解析】 由题意知u⊥v,∴u·v=3+6+z=0,∴z=-9.
    【答案】 -9
    7.已知a=(x,2,-4),b=(-1,y,3),c=(1,-2,z),且a,b,c两两垂直,则(x,y,z)=________.
    【解析】 由题意,知
    解得x=-64,y=-26,z=-17.
    【答案】 (-64,-26,-17)
    8.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________.
    【解析】 ∵·=0,·=0,
    ∴AB⊥AP,AD⊥AP,则①②正确.
    又与不平行,
    ∴是平面ABCD的法向量,则③正确.
    由于=-=(2,3,4),=(-1,2,-1),
    ∴与不平行,故④错误.
    【答案】 ①②③
    三、解答题
    9.如图3­2­15,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.
    图3­2­15
    【证明】 以C为坐标原点,建立如图所示的空间直角坐标系,则A(,,0),B(0,,0),D(,0,0),F(,,1),M.
    所以=,=(0, ,1),=(,-,0).
    设n=(x,y,z)是平面BDF的法向量,
    则n⊥,n⊥,
    所以⇒
    取y=1,得x=1,z=-.
    则n=(1,1,-).
    因为=.
    所以n=- ,得n与共线.
    所以AM⊥平面BDF.
    10.底面ABCD是正方形,AS⊥平面ABCD,且AS=AB,E是SC的中点.求证:平面BDE⊥平面ABCD.
    【证明】 法一 设AB=BC=CD=DA=AS=1,建立如图所示的空间直角坐标系Axyz,则B(1,0,0),D(0,1,0),A(0,0,0),S(0,0,1),E.
    连接AC,设AC与BD相交于点O,连接OE,则点O的坐标为.
    因为=(0,0,1),=,
    所以=.所以OE∥AS.
    又因为AS⊥平面ABCD,
    所以OE⊥平面ABCD.
    又因为OE⊂平面BDE,
    所以平面BDE⊥平面ABCD.
    法二 设平面BDE的法向量为n1=(x,y,z),
    因为=(-1,1,0),=,
    所以即
    令x=1,可得平面BDE的一个法向量为n1=(1,1,0).
    因为AS⊥平面ABCD,
    所以平面ABCD的一个法向量为n2==(0,0,1).
    因为n1·n2=0,
    所以平面BDE⊥平面ABCD.
    [能力提升]
    1.如图3­2­16,在正方体ABCD­A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中,能作为平面AEF的法向量的是(  )
    图3­2­16
    A.(1,-2,4)
    B.(-4,1,-2)
    C.(2,-2,1)
    D.(1,2,-2)
    【解析】 设平面AEF的一个法向量为n=(x,y,z),正方体ABCD­A1B1C1D1的棱长为1,
    则A(1,0,0),E,F.
    故=,=.
    所以
    即所以
    当z=-2时,n=(-4,1,-2),故选B.
    【答案】 B
    2.如图3­2­17,在三棱柱ABC­A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AC=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点.若点Q在线段B1P上,则下列结论正确的是(  )
    图3­2­17
    A.当点Q为线段B1P的中点时,DQ⊥平面A1BD
    B.当点Q为线段B1P的三等分点时,DQ⊥平面A1BD
    C.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD
    D.不存在DQ与平面A1BD垂直
    【解析】 以A1为原点,A1B1,A1C1,A1A所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则由已知得A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),D,P(0,2,0),=(1,0,1),=,=(-1,2,0),=.设平面A1BD的法向量为n=(x,y,z),则取z=-2,则x=2,y=1,所以平面A1BD的一个法向量为n=(2,1,-2).假设DQ⊥平面A1BD,且=λ=λ(-1,2,0)=(-λ,2λ,0),则=+=,因为也是平面A1BD的法向量,所以n=(2,1,-2)与=共线,于是有===成立,但此方程关于λ无解.故不存在DQ与平面A1BD垂直,故选D.
    【答案】 D
    3.如图3­2­18,四棱锥P­ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=1,若E,F分别为PB,AD中点,则直线EF与平面PBC的位置关系________.
    图3­2­18
    【解析】 以D为原点,DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,则E,F,∴=,平面PBC的一个法向量n=(0,1,1),∵=-n,
    ∴∥n,
    ∴EF⊥平面PBC.
    【答案】 垂直
    4.如图3­2­19,在四棱锥P­ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若PA=AB=BC=AD.
    图3­2­19
    (1)求证:CD⊥平面PAC;
    (2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由. 【导学号:18490113】
    【解】 因为∠PAD=90°,所以PA⊥AD.又因为侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,所以PA⊥底面ABCD.又因为∠BAD=90°,所以AB,AD,AP两两垂直.分别以AB,AD,AP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系.
    设AD=2,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).
    (1)=(0,0,1),=(1,1,0),=(-1,1,0),
    可得·=0,·=0,所以AP⊥CD,AC⊥CD.
    又因为AP∩AC=A,所以CD⊥平面PAC.
    (2)设侧棱PA的中点是E,则E,=.
    设平面PCD的法向量是n=(x,y,z),则因为=(-1,1,0),=(0,2,-1),所以取x=1,则y=1,z=2,所以平面PCD的一个法向量为n=(1,1,2).
    所以n·=(1,1,2)·=0,所以n⊥.
    因为BE⊄平面PCD,所以BE∥平面PCD.
    综上所述,当E为PA的中点时,BE∥平面PCD.
    标签
    008852

    008852

    0

    0

    0

    标签云

    img

    高中数学选修2-1 第三章 空间向量与立体几何 3.2第2课时 Word版含答案

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!