本文由 565877 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修3配套课时作业:第一章 算法初步 1.1.2第3课时 Word版含答案
1.1.2 程序框图与算法的基本逻辑结构
第3课时 循环结构、程序框图的画法
课时目标
1.掌握两种循环结构的程序框图的画法.
2.能进行两种循环结构程序框图间的转化.
3.能正确设置程序框图,解决实际问题.
1.循环结构的定义
在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.
2.常见的两种循环结构
名称
结构图
特征
直到型循
环结构
先执行循环体后判断条件,若不满足条件则执行循环体,否则终止循环
当型循
环结构
先对条件进行判断,满足时执行循环体,否则终止循环
一、选择题
1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )
A.分支型循环 B.直到型循环
C.条件型循环 D.当型循环
答案 D
2.下列关于循环结构的说法正确的是( )
A.循环结构中,判断框内的条件是唯一的
B.判断框中的条件成立时,要结束循环向下执行
C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”
D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去
答案 C
解析 由于判断框内的条件不唯一故A错;
由于当型循环结构中,判断框中的条件成立时,执行循环体故B错;由于循环结构不是无限循环的,故C正确,D错.
3.如图所示是一个循环结构的算法,下列说法不正确的是( )
A.①是循环变量初始化,循环就要开始
B.②为循环体
C.③是判断是否继续循环的终止条件
D.①可以省略不写
答案 D
4.某程序框图如图所示,若输出的S=57,则判断框内为( )
A.k>4? B.k>5?
C.k>6? D.k>7?
答案 A
解析 由题意k=1时S=1,当k=2时,S=2×1+2=4;
当k=3时,S=2×4+3=11,当k=4时,S=2×11+4=26,
当k=5时,S=2×26+5=57,此时与输出结果一致,
所以此时的k值为k>4.
5.如果执行下面的程序框图,输入n=6,m=4,那么输出的p等于( )
A.720 B.360
C.240 D.120
答案 B
解析 ①k=1,p=3;
②k=2,p=12;
③k=3,p=60;
④k=4,p=360.
而k=4时不符合条件,终止循环输出p=360.
6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为( )
A.S=S*(n+1) B.S=S*xn+1
C.S=S*n D.S=S*xn
答案 D
解析 赋值框内应为累乘积,累乘积=前面项累乘积×第n项,即S=S*xn,故选D.
二、填空题
7.下图的程序框图输出的结果是________.
答案 20
解析 当a=5时,S=1×5=5;a=4时,S=5×4=20;
此时程序结束,故输出S=20.
8.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,…,xn(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为________.
答案
解析 当i=1时,S1=1,S2=1;
当i=2时,S1=1+2=3,S2=1+22=5,
此时S=(5-×9)=.
i的值变成3,从循环体中跳出输出S的值为.
9.按下列程序框图来计算:
如果x=5,应该运算________次才停止.
答案 4
解析 xn+1=3xn-2,x1=5,x2=13,x3=37,x4=109,x5=325>200,所以运行4次.
三、解答题
10.画出计算1+++…+的值的一个程序框图.
解 由题意知:
①所有相加数的分子均为1.
②相加数的分母有规律递增.
解答本题可使用循环结构,引入累加变量S和计数变量i,S=S+,i=i+1,两个式子是反复执行的部分,构成循环体.
11.求使1+2+3+4+5+…+n>100成立的最小自然数n的值,画出程序框图.
解 设累加变量为S,
程序框图如图.
能力提升
12.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.
解 算法步骤如下:
第一步,把计数变量n的初始值设为1.
第二步,输入一个成绩r,比较r与60的大小.
若r≥60,则输出r,然后执行下一步;
若r<60,则执行下一步.
第三步,使计数变量n的值增加1.
第四步,判断计数变量n与学生个数50的大小,若n≤50,返回第二步,若n大于50,则结束.
程序框图如图.
1.循环结构
需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤.反复执行的处理步骤称为循环体.
(1)循环结构中一定包含条件结构;
(2)在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或中止循环体的条件中.
2.三种基本结构的共同特点
(1)只有一个入口.
(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的
出口和条件结构的出口混为一谈.
(3)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它.如图1中的A,没有一条从入口到出口的路径通过它,就是不符合要求的程序框图.
(4)结构内不存在死循环,即无终止的循环.像图2就是一个死循环.在程序框图中是不允许有死循环出现的.
第3课时 循环结构、程序框图的画法
课时目标
1.掌握两种循环结构的程序框图的画法.
2.能进行两种循环结构程序框图间的转化.
3.能正确设置程序框图,解决实际问题.
1.循环结构的定义
在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.
2.常见的两种循环结构
名称
结构图
特征
直到型循
环结构
先执行循环体后判断条件,若不满足条件则执行循环体,否则终止循环
当型循
环结构
先对条件进行判断,满足时执行循环体,否则终止循环
一、选择题
1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )
A.分支型循环 B.直到型循环
C.条件型循环 D.当型循环
答案 D
2.下列关于循环结构的说法正确的是( )
A.循环结构中,判断框内的条件是唯一的
B.判断框中的条件成立时,要结束循环向下执行
C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”
D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去
答案 C
解析 由于判断框内的条件不唯一故A错;
由于当型循环结构中,判断框中的条件成立时,执行循环体故B错;由于循环结构不是无限循环的,故C正确,D错.
3.如图所示是一个循环结构的算法,下列说法不正确的是( )
A.①是循环变量初始化,循环就要开始
B.②为循环体
C.③是判断是否继续循环的终止条件
D.①可以省略不写
答案 D
4.某程序框图如图所示,若输出的S=57,则判断框内为( )
A.k>4? B.k>5?
C.k>6? D.k>7?
答案 A
解析 由题意k=1时S=1,当k=2时,S=2×1+2=4;
当k=3时,S=2×4+3=11,当k=4时,S=2×11+4=26,
当k=5时,S=2×26+5=57,此时与输出结果一致,
所以此时的k值为k>4.
5.如果执行下面的程序框图,输入n=6,m=4,那么输出的p等于( )
A.720 B.360
C.240 D.120
答案 B
解析 ①k=1,p=3;
②k=2,p=12;
③k=3,p=60;
④k=4,p=360.
而k=4时不符合条件,终止循环输出p=360.
6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为( )
A.S=S*(n+1) B.S=S*xn+1
C.S=S*n D.S=S*xn
答案 D
解析 赋值框内应为累乘积,累乘积=前面项累乘积×第n项,即S=S*xn,故选D.
二、填空题
7.下图的程序框图输出的结果是________.
答案 20
解析 当a=5时,S=1×5=5;a=4时,S=5×4=20;
此时程序结束,故输出S=20.
8.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,…,xn(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为________.
答案
解析 当i=1时,S1=1,S2=1;
当i=2时,S1=1+2=3,S2=1+22=5,
此时S=(5-×9)=.
i的值变成3,从循环体中跳出输出S的值为.
9.按下列程序框图来计算:
如果x=5,应该运算________次才停止.
答案 4
解析 xn+1=3xn-2,x1=5,x2=13,x3=37,x4=109,x5=325>200,所以运行4次.
三、解答题
10.画出计算1+++…+的值的一个程序框图.
解 由题意知:
①所有相加数的分子均为1.
②相加数的分母有规律递增.
解答本题可使用循环结构,引入累加变量S和计数变量i,S=S+,i=i+1,两个式子是反复执行的部分,构成循环体.
11.求使1+2+3+4+5+…+n>100成立的最小自然数n的值,画出程序框图.
解 设累加变量为S,
程序框图如图.
能力提升
12.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分以上)的成绩,试设计一个算法,并画出程序框图.
解 算法步骤如下:
第一步,把计数变量n的初始值设为1.
第二步,输入一个成绩r,比较r与60的大小.
若r≥60,则输出r,然后执行下一步;
若r<60,则执行下一步.
第三步,使计数变量n的值增加1.
第四步,判断计数变量n与学生个数50的大小,若n≤50,返回第二步,若n大于50,则结束.
程序框图如图.
1.循环结构
需要重复执行同一操作的结构称为循环结构,即从某处开始,按照一定条件反复执行某一处理步骤.反复执行的处理步骤称为循环体.
(1)循环结构中一定包含条件结构;
(2)在循环结构中,通常都有一个起循环计数作用的变量,这个变量的取值一般都含在执行或中止循环体的条件中.
2.三种基本结构的共同特点
(1)只有一个入口.
(2)只有一个出口,请注意一个菱形判断框有两个出口,而一个条件结构只有一个出口,不要将菱形框的
出口和条件结构的出口混为一谈.
(3)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它.如图1中的A,没有一条从入口到出口的路径通过它,就是不符合要求的程序框图.
(4)结构内不存在死循环,即无终止的循环.像图2就是一个死循环.在程序框图中是不允许有死循环出现的.
- 02-18高中数学选修2-1配套课时作业:第二章 圆锥曲线与方程 章末总结 Word版含答案
- 02-17高中数学选修2-1配套课时作业:第一章 常用逻辑用语 1.1.2 Word版含答案
- 02-17高中数学必修4:第13课时 正切函数的图象与性质 Word版含解析
- 02-16高二下册数学数学选修2-2章末测试:第三章数系的扩充与复数的引入B Word版含解析
- 02-15高中数学选修2-2课时训练 数学归纳法(一) Word版含答案
- 02-13高中数学必修4:第14课时 平移变换、伸缩变换 Word版含解析
- 02-13高中数学人教A版必修三 第二章 统计 学业分层测评11 Word版含答案
- 02-13高中数学选修2-1配套课时作业:第二章 圆锥曲线与方程 2.3.1 Word版含答案
- 02-12高中数学选修2-2自我小测 定积分的简单应用(第1课时) Word版含解析
- 02-12高中数学选修2-2自我小测 定积分的简单应用(第2课时) Word版含解析