本文由 185412 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修3配套课时作业统计 2.2.2 Word版含答案
2.2.2 用样本的数字特征估计总体的数字特征
课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.
1.众数、中位数、平均数
(1)众数的定义:
一组数据中重复出现次数________的数称为这组数的众数.
(2)中位数的定义及求法
把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.
①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.
②当数据个数为偶数时,中位数为排列的最中间的两个数的________.
(3)平均数
①平均数的定义:
如果有n个数x1,x2,…,xn,那么=____________,叫做这n个数的平均数.
②平均数的分类:
总体平均数:________所有个体的平均数叫总体平均数.
样本平均数:________所有个体的平均数叫样本平均数.
2.标准差、方差
(1)标准差的求法:
标准差是样本数据到平均数的一种平均距离,一般用s表示.
s=________________________________________________________________________.
(2)方差的求法:
标准差的平方s2叫做方差.
s2=________________________________________________________________________.
一、选择题
1.下列说法正确的是( )
A.在两组数据中,平均值较大的一组方差较大
B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小
C.方差的求法是求出各个数据与平均值的差的平方后再求和
D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高
2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )
A.甲B.乙
C.甲、乙相同D.不能确定
4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )
A.s2B.s2
C.3s2D.9s2
5.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )
A.84,4.84 B.84,1.6
C.85,1.6 D.85,0.4
6.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB则( )
A.A>B,sA>sBB.AsB
C.A>B,sA题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.
8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
甲
10
8
9
9
9
乙
10
10
7
9
9
如果甲、乙两人只能有1人入选,则入选的应为________.
9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,这21个数据的方差为________.
三、解答题
10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写表:
平均数
方差
中位数
命中9环及9环以上的次数
甲
乙
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
能力提升
11.下面是一家快餐店所有工作人员(共7人)一周的工资表:
总经理
大厨
二厨
采购员
杂工
服务员
会计
3 000元
450元
350元
400元
320元
320元
410元
(1)计算所有人员一周的平均工资;
(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?
(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?
12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:
平均成绩
标准差
第一组
90
6
第二组
80
4
求全班的平均成绩和标准差.
1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.
众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.
由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.
2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.
3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.
答案:
2.2.2 用样本的数字特征估计总体的数字特征
知识梳理
1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)① ②总体中 样本中
2.(1) (2)[(x1-)2+(x2-)2+…+(xn-)2]
作业设计
1.B [A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]
2.D [由题意a=(16+18+15+11+16+18+18+17+15+13)==15.7,
中位数为16,众数为18,即b=16,c=18,
∴c>b>a.]
3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.
∵5.09>3.72,故选B.]
4.D [s=[9x+9x+…+9x-n(3)2]=9·(x+x+…+x-n 2)=9·s2(s为新数据的方差).]
5.C [由题意=(84+84+86+84+87)=85.
s2=[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=(1+1+1+1+4)==1.6.]
6.B [样本A数据均小于或等于10,样本B数据均大于或等于10,故A又样本B波动范围较小,故sA>sB.]
7.91
解析 由题意得
8.甲
解析 甲=9,=0.4,乙=9,=1.2,故甲的成绩较稳定,选甲.
9.0.19
解析 这21个数的平均数仍为20,从而方差为×[20×0.2+(20-20)2]≈0.19.
10.解 由折线图,知
甲射击10次中靶环数分别为:
9,5,7,8,7,6,8,6,7,7.
将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为:
2,4,6,8,7,7,8,9,9,10.
也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.
(1)甲=×(5+6×2+7×4+8×2+9)=
=7(环),
乙=×(2+4+6+7×2+8×2+9×2+10)=
=7(环),
s=×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]
=×(4+2+0+2+4)
=1.2,
s=×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]
=×(25+9+1+0+2+8+9)
=5.4.
根据以上的分析与计算填表如下:
平均数
方差
中位数
命中9环及9环以上的次数
甲
7
1.2
7
1
乙
7
5.4
7.5
3
(2)①∵平均数相同,
<,
∴甲成绩比乙稳定.
②∵平均数相同,
甲的中位数<乙的中位数,
∴乙的成绩比甲好些.
③∵平均数相同,命中9环及9环以上的次数甲比乙少,
∴乙成绩比甲好些.
④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.
11.解 (1)平均工资即为该组数据的平均数
=×(3 000+450+350+400+320+320+410)
=×5 250=750(元).
(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.
(3)除去总经理的工资后,其他工作人员的平均工资为:′=×(450+350+400+320+320+410)
=×2 250=375(元).
这个平均工资能代表一般工作人员一周的收入水平.
12.解 设第一组20名学生的成绩为xi(i=1,2,…,20),
第二组20名学生的成绩为yi(i=1,2,…,20),
依题意有:=(x1+x2+…+x20)=90,
=(y1+y2+…+y20)=80,故全班平均成绩为:
(x1+x2+…+x20+y1+y2+…+y20)
=(90×20+80×20)=85;
又设第一组学生成绩的标准差为s1,第二组学生成绩的标准差为s2,则s=(x+x+…+x-202),
s=(y+y+…+y-202)
(此处,=90,=80),又设全班40名学生的标准差为s,平均成绩为(=85),故有
s2=(x+x+…+x+y+y+…+y-402)
=(20s+202+20s+202-402)
=(62+42+902+802-2×852)=51.
s=.
所以全班同学的平均成绩为85分,标准差为.
课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.
1.众数、中位数、平均数
(1)众数的定义:
一组数据中重复出现次数________的数称为这组数的众数.
(2)中位数的定义及求法
把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.
①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.
②当数据个数为偶数时,中位数为排列的最中间的两个数的________.
(3)平均数
①平均数的定义:
如果有n个数x1,x2,…,xn,那么=____________,叫做这n个数的平均数.
②平均数的分类:
总体平均数:________所有个体的平均数叫总体平均数.
样本平均数:________所有个体的平均数叫样本平均数.
2.标准差、方差
(1)标准差的求法:
标准差是样本数据到平均数的一种平均距离,一般用s表示.
s=________________________________________________________________________.
(2)方差的求法:
标准差的平方s2叫做方差.
s2=________________________________________________________________________.
一、选择题
1.下列说法正确的是( )
A.在两组数据中,平均值较大的一组方差较大
B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小
C.方差的求法是求出各个数据与平均值的差的平方后再求和
D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高
2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )
A.甲B.乙
C.甲、乙相同D.不能确定
4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )
A.s2B.s2
C.3s2D.9s2
5.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )
A.84,4.84 B.84,1.6
C.85,1.6 D.85,0.4
6.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB则( )
A.A>B,sA>sBB.AsB
C.A>B,sA
1
2
3
4
5
6
答 案
二、填空题
7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.
8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
甲
10
8
9
9
9
乙
10
10
7
9
9
如果甲、乙两人只能有1人入选,则入选的应为________.
9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,这21个数据的方差为________.
三、解答题
10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写表:
平均数
方差
中位数
命中9环及9环以上的次数
甲
乙
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).
能力提升
11.下面是一家快餐店所有工作人员(共7人)一周的工资表:
总经理
大厨
二厨
采购员
杂工
服务员
会计
3 000元
450元
350元
400元
320元
320元
410元
(1)计算所有人员一周的平均工资;
(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?
(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?
12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:
平均成绩
标准差
第一组
90
6
第二组
80
4
求全班的平均成绩和标准差.
1.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.
众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.
由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.
2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.
3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.
答案:
2.2.2 用样本的数字特征估计总体的数字特征
知识梳理
1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)① ②总体中 样本中
2.(1) (2)[(x1-)2+(x2-)2+…+(xn-)2]
作业设计
1.B [A中平均值和方差是数据的两个特征,不存在这种关系;C中求和后还需取平均数;D中方差越大,射击越不平稳,水平越低.]
2.D [由题意a=(16+18+15+11+16+18+18+17+15+13)==15.7,
中位数为16,众数为18,即b=16,c=18,
∴c>b>a.]
3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.
∵5.09>3.72,故选B.]
4.D [s=[9x+9x+…+9x-n(3)2]=9·(x+x+…+x-n 2)=9·s2(s为新数据的方差).]
5.C [由题意=(84+84+86+84+87)=85.
s2=[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=(1+1+1+1+4)==1.6.]
6.B [样本A数据均小于或等于10,样本B数据均大于或等于10,故A又样本B波动范围较小,故sA>sB.]
7.91
解析 由题意得
8.甲
解析 甲=9,=0.4,乙=9,=1.2,故甲的成绩较稳定,选甲.
9.0.19
解析 这21个数的平均数仍为20,从而方差为×[20×0.2+(20-20)2]≈0.19.
10.解 由折线图,知
甲射击10次中靶环数分别为:
9,5,7,8,7,6,8,6,7,7.
将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为:
2,4,6,8,7,7,8,9,9,10.
也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.
(1)甲=×(5+6×2+7×4+8×2+9)=
=7(环),
乙=×(2+4+6+7×2+8×2+9×2+10)=
=7(环),
s=×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]
=×(4+2+0+2+4)
=1.2,
s=×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]
=×(25+9+1+0+2+8+9)
=5.4.
根据以上的分析与计算填表如下:
平均数
方差
中位数
命中9环及9环以上的次数
甲
7
1.2
7
1
乙
7
5.4
7.5
3
(2)①∵平均数相同,
<,
∴甲成绩比乙稳定.
②∵平均数相同,
甲的中位数<乙的中位数,
∴乙的成绩比甲好些.
③∵平均数相同,命中9环及9环以上的次数甲比乙少,
∴乙成绩比甲好些.
④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.
11.解 (1)平均工资即为该组数据的平均数
=×(3 000+450+350+400+320+320+410)
=×5 250=750(元).
(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.
(3)除去总经理的工资后,其他工作人员的平均工资为:′=×(450+350+400+320+320+410)
=×2 250=375(元).
这个平均工资能代表一般工作人员一周的收入水平.
12.解 设第一组20名学生的成绩为xi(i=1,2,…,20),
第二组20名学生的成绩为yi(i=1,2,…,20),
依题意有:=(x1+x2+…+x20)=90,
=(y1+y2+…+y20)=80,故全班平均成绩为:
(x1+x2+…+x20+y1+y2+…+y20)
=(90×20+80×20)=85;
又设第一组学生成绩的标准差为s1,第二组学生成绩的标准差为s2,则s=(x+x+…+x-202),
s=(y+y+…+y-202)
(此处,=90,=80),又设全班40名学生的标准差为s,平均成绩为(=85),故有
s2=(x+x+…+x+y+y+…+y-402)
=(20s+202+20s+202-402)
=(62+42+902+802-2×852)=51.
s=.
所以全班同学的平均成绩为85分,标准差为.
- 02-09高中数学必修4:第17课时 平面向量的实际背景及其基本概念 Word版含解析
- 02-08高中数学必修3配套课时作业:第三章 概率 章末复习课 Word版含答案
- 02-08高中数学选修2-2自我小测 导数在研究函数中的应用(第3课时) Word版含解析
- 02-08高中数学必修3配套课时作业统计 2.1.3 Word版含答案
- 02-08高中数学选修2-3 第二章 随机变量及其分布 2.1-2.1.2学业分层测评 Word版含答案
- 02-06高中数学必修四课时训练 函数y=Asin(ωx+φ)的图象 1.5(二) Word版含答案
- 02-06高中数学选修2-2课时作业:第二章 推理与证明2.1.1合情推理 Word版含解析
- 02-05高中数学必修四课时训练 第一章 三角函数 章末检测(A) Word版含答案
- 02-05高中数学选修2-3练习:第一章1.3-1.3.1二项式定理 Word版含解析
- 02-04高中数学选修2-2课时训练 导数在研究函数中的应用1.3.1 Word版含答案