本文由 124361 收集发布,转载请注明出处,如有问题请联系我们!高中数学 函数的概念习题 新人教A版必修1
1.2.1 函数的概念
班级:__________姓名:__________设计人__________日期__________
课后练习
【基础过关】
1.下列函数中,值域为(0,+∞)的是( )
A.y=
B.y=
C.y=
D.y=x2+1
2.下列式子中不能表示函数的是
A.
B.
C.
D.
3.函数y=+的定义域是( )
A.(-1,1)
B.(-∞,-1)∪(1,+∞)
C.(0,1)
D.{-1,1}
4.若满足,且,,则等于
A.
B.
C.
D.
5.若为一确定区间,则的取值范围是 .
6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .
7.求下列函数的定义域.
(1);
(2).
8.已知.
(1)求,的值;
(2)求的值.
【能力提升】
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.
(1)求f(0),f(1)的值;
(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.
答案
【基础过关】
1.B
【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.
2.A
【解析】一个x对应的y值不唯一.
3.D
【解析】要使函数式有意义,需满足,解得x=±1,故选D.
4.B
【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.
5.
【解析】由题意3a-1>a,则.
【备注】误区警示:本题易忽略区间概念而得出,则的错误.
6.2
【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.
【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.
7.(1)由已知得
∴函数的定义域为.
(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,
得x≠-3,x≠-1.
∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).
8.(1),
.
(2)∵,
∴
=
=1+1+1++1(共2012个1相加)
=2012.
【能力提升】
(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;
令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.
(2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p,
令a=b=3,得f(9)=f(3)+f(3)=2q,
令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.
方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.
【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.
班级:__________姓名:__________设计人__________日期__________
课后练习
【基础过关】
1.下列函数中,值域为(0,+∞)的是( )
A.y=
B.y=
C.y=
D.y=x2+1
2.下列式子中不能表示函数的是
A.
B.
C.
D.
3.函数y=+的定义域是( )
A.(-1,1)
B.(-∞,-1)∪(1,+∞)
C.(0,1)
D.{-1,1}
4.若满足,且,,则等于
A.
B.
C.
D.
5.若为一确定区间,则的取值范围是 .
6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .
7.求下列函数的定义域.
(1);
(2).
8.已知.
(1)求,的值;
(2)求的值.
【能力提升】
已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.
(1)求f(0),f(1)的值;
(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.
答案
【基础过关】
1.B
【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.
2.A
【解析】一个x对应的y值不唯一.
3.D
【解析】要使函数式有意义,需满足,解得x=±1,故选D.
4.B
【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.
5.
【解析】由题意3a-1>a,则.
【备注】误区警示:本题易忽略区间概念而得出,则的错误.
6.2
【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.
【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.
7.(1)由已知得
∴函数的定义域为.
(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,
得x≠-3,x≠-1.
∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).
8.(1),
.
(2)∵,
∴
=
=1+1+1++1(共2012个1相加)
=2012.
【能力提升】
(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;
令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.
(2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p,
令a=b=3,得f(9)=f(3)+f(3)=2q,
令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.
方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.
【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.
- 09-11高中数学人教A版必修二 章末综合测评1 Word版含答案
- 09-11高中数学选修1-2课时自测 当堂达标2.复数代数形式的加减运算及其几何意义 精讲优练课型 Word版含答案
- 09-11高中人教A版数学必修1单元测试 基本初等函数(Ⅰ)(一)B卷 Word版含解析
- 09-10高中数学人教A版必修二 模块综合测评 Word版含答案
- 09-10人教版高中数学必修二检测圆与方程 课后提升作业 二十六 4.2.1 Word版含解析
- 09-09高中数学选修1-1学业分层测评16 函数的单调性与导数 Word版含解析
- 09-09高中数学选修1-2课时自测 当堂达标2.1.综合法 精讲优练课型 Word版含答案
- 09-08高中数学必修一配套课时作业集合与函数的概念 1.1.3第1课时 Word版含解析
- 09-08高中数学人教A版必修二 第一章 空间几何体 学业分层测评6 Word版含答案
- 09-07人教版高中数学必修二检测点、直线、平面之间的位置关系 课后提升作业 九 2.1.3&2.1.4 Word版含解析