本文由 LIUliu1314 收集发布,转载请注明出处,如有问题请联系我们!高中数学选修2-3练习:1.3.2 “杨辉三角”与二项式系数的性质 Word版含解析
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.在(a-b)20的二项展开式中,二项式系数与第6项的二项式系数相同的项是( )
A.第15项 B.第16项
C.第17项 D.第18项
【解析】 第6项的二项式系数为C,又C=C,所以第16项符合条件.
【答案】 B
2.(2016·吉林一中期末)已知n的展开式的二项式系数之和为32,则展开式中含x项的系数是( )
A.5 B.20
C.10 D.40
【解析】 根据题意,该二项式的展开式的二项式系数之和为32,
则有2n=32,可得n=5,
Tr+1=Cx2(5-r)·x-r=Cx10-3r,
令10-3r=1,解得r=3,
所以展开式中含x项的系数是C=10,故选C.
【答案】 C
3.设(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,则a0+a2+a4+…+a2n等于( ) 【导学号:97270026】
A.2n B.
C.2n+1 D.
【解析】 令x=1,得3n=a0+a1+a2+…+a2n-1+a2n,①
令x=-1,得1=a0-a1+a2-…-a2n-1+a2n,②
①+②得3n+1=2(a0+a2+…+a2n),
∴a0+a2+…+a2n=.故选D.
【答案】 D
4.(2016·信阳六高期中)已知(1+2x)8展开式的二项式系数的最大值为a,系数的最大值为b,则的值为( )
A. B.
C. D.
【解析】 a=C=70,设b=C2r,则得5≤r≤6,所以b=C26=C26=7×28,所以=.故选A.
【答案】 A
5.在(x-)2 010的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于( )
A.23 015 B.-23 014
C.23 014 D.-23 008
【解析】 因为S=,当x=时,S=-=-23 014.
【答案】 B
二、填空题
6.若(1-2x)2 016=a0+a1x+…+a2 016x2 016(x∈R),则++…+的值为________.
【解析】 令x=0,得a0=1.令x=,得a0+++…+=0,所以++…+=-1.
【答案】 -1
7.若n是正整数,则7n+7n-1C+7n-2C+…+7C除以9的余数是________.
【解析】 7n+7n-1C+7n-2C+…+7C=(7+1)n-C=8n-1=(9-1)n-1=C9n(-1)0+C9n-1(-1)1+…+C90(-1)n-1,∴n为偶数时,余数为0;当n为奇数时,余数为7.
【答案】 7或0
8.在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图135所示.那么,在“杨辉三角”中,第________行会出现三个相邻的数,其比为3∶4∶5.
【解析】 根据题意,设所求的行数为n,则存在正整数k,
使得连续三项C,C,C,有=且=.
化简得=,=,联立解得k=27,n=62.
故第62行会出现满足条件的三个相邻的数.
【答案】 62
三、解答题
9.已知(1+2x-x2)7=a0+a1x+a2x2+…+a13x13+a14x14.
(1)求a0+a1+a2+…+a14;
(2)求a1+a3+a5+…+a13.
【解】 (1)令x=1,
则a0+a1+a2+…+a14=27=128.①
(2)令x=-1,
则a0-a1+a2-a3+…-a13+a14=(-2)7=-128.②
①-②得2(a1+a3+…+a13)=256,
所以a1+a3+a5+…+a13=128.
10.已知n的展开式中前三项的二项式系数的和等于37.求展开式中二项式系数最大的项的系数.
【解】 由C+C+C=37,得1+n+n(n-1)=37,得n=8.8的展开式共有9项,其中T5=C4(2x)4=x4,该项的二项式系数最大,系数为.
[能力提升]
1.若(-x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2=( )
A.1 B.-1
C.2 D.-2
【解析】 令x=1,得a0+a1+a2+…+a10=(-1)10,
令x=-1,得a0-a1+a2-a3+…+a10=(+1)10,
故(a0+a2+…+a10)2-(a1+a3+…+a9)2
=(a0+a1+a2+…+a10)(a0-a1+a2-a3+…+a10)
=(-1)10(+1)10=1.
【答案】 A
2.把通项公式为an=2n-1(n∈N*)的数列{an}的各项排成如图136所示的三角形数阵.记S(m,n)表示该数阵的第m行中从左到右的第n个数,则S(10,6)对应于数阵中的数是( )
1
3 5
7 9 11
13 15 17 19
……
图136
A.91 B.101
C.106 D.103
【解析】 设这个数阵每一行的第一个数组成数列{bn},则b1=1,bn-bn-1=2(n-1),∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2[(n-1)+(n-2)+…+1]+1=n2-n+1,
∴b10=102-10+1=91,S(10,6)=b10+2×(6-1)=101.
【答案】 B
3.(2016·孝感高级中学期中)若(x2+1)(x-3)9=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,则a1+a2+a3+…+a11的值为________.
【解析】 令x=2,得-5=a0,令x=3,得0=a0+a1+a2+a3+…+a11,所以a1+a2+a3+…+a11=-a0=5.
【答案】 5
4.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值;
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次项的系数之和. 【导学号:97270027】
【解】 (1)由已知C+2C=11,所以m+2n=11,
x2的系数为C+22C=+2n(n-1)=+(11-m)·=2+.
因为m∈N*,所以m=5时,x2的系数取得最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
所以f(x)=(1+x)5+(1+2x)3,
设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次项的系数之和为30.
(建议用时:45分钟)
[学业达标]
一、选择题
1.在(a-b)20的二项展开式中,二项式系数与第6项的二项式系数相同的项是( )
A.第15项 B.第16项
C.第17项 D.第18项
【解析】 第6项的二项式系数为C,又C=C,所以第16项符合条件.
【答案】 B
2.(2016·吉林一中期末)已知n的展开式的二项式系数之和为32,则展开式中含x项的系数是( )
A.5 B.20
C.10 D.40
【解析】 根据题意,该二项式的展开式的二项式系数之和为32,
则有2n=32,可得n=5,
Tr+1=Cx2(5-r)·x-r=Cx10-3r,
令10-3r=1,解得r=3,
所以展开式中含x项的系数是C=10,故选C.
【答案】 C
3.设(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,则a0+a2+a4+…+a2n等于( ) 【导学号:97270026】
A.2n B.
C.2n+1 D.
【解析】 令x=1,得3n=a0+a1+a2+…+a2n-1+a2n,①
令x=-1,得1=a0-a1+a2-…-a2n-1+a2n,②
①+②得3n+1=2(a0+a2+…+a2n),
∴a0+a2+…+a2n=.故选D.
【答案】 D
4.(2016·信阳六高期中)已知(1+2x)8展开式的二项式系数的最大值为a,系数的最大值为b,则的值为( )
A. B.
C. D.
【解析】 a=C=70,设b=C2r,则得5≤r≤6,所以b=C26=C26=7×28,所以=.故选A.
【答案】 A
5.在(x-)2 010的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于( )
A.23 015 B.-23 014
C.23 014 D.-23 008
【解析】 因为S=,当x=时,S=-=-23 014.
【答案】 B
二、填空题
6.若(1-2x)2 016=a0+a1x+…+a2 016x2 016(x∈R),则++…+的值为________.
【解析】 令x=0,得a0=1.令x=,得a0+++…+=0,所以++…+=-1.
【答案】 -1
7.若n是正整数,则7n+7n-1C+7n-2C+…+7C除以9的余数是________.
【解析】 7n+7n-1C+7n-2C+…+7C=(7+1)n-C=8n-1=(9-1)n-1=C9n(-1)0+C9n-1(-1)1+…+C90(-1)n-1,∴n为偶数时,余数为0;当n为奇数时,余数为7.
【答案】 7或0
8.在“杨辉三角”中,每一个数都是它“肩上”两个数的和,它开头几行如图135所示.那么,在“杨辉三角”中,第________行会出现三个相邻的数,其比为3∶4∶5.
【解析】 根据题意,设所求的行数为n,则存在正整数k,
使得连续三项C,C,C,有=且=.
化简得=,=,联立解得k=27,n=62.
故第62行会出现满足条件的三个相邻的数.
【答案】 62
三、解答题
9.已知(1+2x-x2)7=a0+a1x+a2x2+…+a13x13+a14x14.
(1)求a0+a1+a2+…+a14;
(2)求a1+a3+a5+…+a13.
【解】 (1)令x=1,
则a0+a1+a2+…+a14=27=128.①
(2)令x=-1,
则a0-a1+a2-a3+…-a13+a14=(-2)7=-128.②
①-②得2(a1+a3+…+a13)=256,
所以a1+a3+a5+…+a13=128.
10.已知n的展开式中前三项的二项式系数的和等于37.求展开式中二项式系数最大的项的系数.
【解】 由C+C+C=37,得1+n+n(n-1)=37,得n=8.8的展开式共有9项,其中T5=C4(2x)4=x4,该项的二项式系数最大,系数为.
[能力提升]
1.若(-x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2=( )
A.1 B.-1
C.2 D.-2
【解析】 令x=1,得a0+a1+a2+…+a10=(-1)10,
令x=-1,得a0-a1+a2-a3+…+a10=(+1)10,
故(a0+a2+…+a10)2-(a1+a3+…+a9)2
=(a0+a1+a2+…+a10)(a0-a1+a2-a3+…+a10)
=(-1)10(+1)10=1.
【答案】 A
2.把通项公式为an=2n-1(n∈N*)的数列{an}的各项排成如图136所示的三角形数阵.记S(m,n)表示该数阵的第m行中从左到右的第n个数,则S(10,6)对应于数阵中的数是( )
1
3 5
7 9 11
13 15 17 19
……
图136
A.91 B.101
C.106 D.103
【解析】 设这个数阵每一行的第一个数组成数列{bn},则b1=1,bn-bn-1=2(n-1),∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2[(n-1)+(n-2)+…+1]+1=n2-n+1,
∴b10=102-10+1=91,S(10,6)=b10+2×(6-1)=101.
【答案】 B
3.(2016·孝感高级中学期中)若(x2+1)(x-3)9=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,则a1+a2+a3+…+a11的值为________.
【解析】 令x=2,得-5=a0,令x=3,得0=a0+a1+a2+a3+…+a11,所以a1+a2+a3+…+a11=-a0=5.
【答案】 5
4.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值;
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次项的系数之和. 【导学号:97270027】
【解】 (1)由已知C+2C=11,所以m+2n=11,
x2的系数为C+22C=+2n(n-1)=+(11-m)·=2+.
因为m∈N*,所以m=5时,x2的系数取得最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
所以f(x)=(1+x)5+(1+2x)3,
设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a3x3+a4x4+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次项的系数之和为30.
- 06-18高中数学选修2-3练习:1.1.2 分类加法计数原理与分步乘法计数原理的应用 Word版含解析
- 06-18高中数学选修2-1 第二章 圆锥曲线与方程 2.4.2 Word版含答案
- 06-17高中数学必修四课时训练 平面向量的线性运算 2.2.2 Word版含答案
- 06-17高中数学选修2-2自我小测 定积分的概念(第2课时) Word版含解析
- 06-17高中数学必修4课时达标检测(二十四) 平面向量应用举例 Word版含解析
- 06-17高中数学选修2-1配套课时作业:第一章 常用逻辑用语 1.4 Word版含答案
- 06-16高中数学选修2-1配套课时作业:第一章 常用逻辑用语 1.2 Word版含答案
- 06-15高中数学人教A版必修三 第一章 算法初步 学业分层测评3 Word版含答案
- 06-15高中数学选修2-3练习:2.3.1 离散型随机变量的均值 Word版含解析
- 06-12高中数学必修4课时达标检测(九) 正弦函数、余弦函数的性质(一) Word版含解析