习作分享 好教案logo
首页 高一 高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

本文由 152911179 收集发布,转载请注明出处,如有问题请联系我们!高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

  • 资源类别:高一试卷
  • 所属教版:高一下册数学人教版
  • 文件格式:ppt/doc
  • 大小:60k
  • 浏览次数:1364
  • 整理时间:2021-04-28
  • 学业分层测评(二十四)
    (建议用时:45分钟)
    [达标必做]
    一、选择题
    1.已知两圆的圆心距是6,两圆的半径分别是方程x2-6x+8=0的两个根,则这两个圆的位置关系是(  )
    A.外离 B.外切
    C.相交 D.内切
    【解析】 由已知两圆半径的和为6,与圆心距相等,故两圆外切.
    【答案】 B
    2.半径为5且与圆x2+y2-6x+8y=0相切于原点的圆的方程为(  )
    A.x2+y2-6x-8y=0
    B.x2+y2+6x-8y=0
    C.x2+y2+6x+8y=0
    D.x2+y2-6x-8y=0或x2+y2-6x+8y=0
    【解析】 已知圆的圆心为(3,-4),半径为5,所求圆的半径也为5,由两圆相切于原点,知所求圆的圆心与已知圆的圆心关于原点对称,即为(-3,4),可知选B.
    【答案】 B
    3.点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是(  )
    A.5 B.1
    C.3-5 D.3+5
    【解析】 圆C1:x2+y2-8x-4y+11=0,即(x-4)2+(y-2)2=9,圆心为C1(4,2);圆C2:x2+y2+4x+2y+1=0,即(x+2)2+(y+1)2=4,圆心为C2(-2,-1),两圆相离,|PQ|的最小值为|C1C2|-(r1+r2)=3-5.
    【答案】 C
    4.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=(  )
    A.4 B.4
    C.8 D.8
    【解析】 ∵两圆与两坐标轴都相切,且都经过点(4,1),
    ∴两圆圆心均在第一象限且横、纵坐标相等.
    设两圆的圆心分别为(a,a),(b,b),
    则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,
    即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0.
    ∴a+b=10,ab=17,
    ∴(a-b)2=(a+b)2-4ab=100-4×17=32.
    ∴|C1C2|===8.
    【答案】 C
    5.过点P(2,3)向圆C:x2+y2=1上作两条切线PA,PB,则弦AB所在的直线方程为(  )
    A.2x-3y-1=0
    B.2x+3y-1=0
    C.3x+2y-1=0
    D.3x-2y-1=0
    【解析】 弦AB可以看作是以PC为直径的圆与圆x2+y2=1的交线,而以PC为直径的圆的方程为(x-1)2+2=.根据两圆的公共弦的求法,可得弦AB所在的直线方程为:(x-1)2+2--(x2+y2-1)=0,整理可得2x+3y-1=0,故选B.
    【答案】 B
    二、填空题
    6.过两圆x2+y2-x-y-2=0与x2+y2+4x-4y-8=0的交点和点(3,1)的圆的方程是________.
    【解析】 设所求圆的方程为 (x2+y2-x-y-2)+λ(x2+y2+4x-4y-8)=0(λ≠-1),将(3,1)代入得λ=-,故所求圆的方程为x2+y2-x+y+2=0.
    【答案】 x2+y2-x+y+2=0
    7.两圆相交于两点A(1,3)和B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的值为________.
    【解析】 由题意知,线段AB的中点在直线x-y+c=0上,
    且kAB==-1,即m=5,
    又点在该直线上,
    所以-1+c=0,所以c=-2,所以m+c=3.
    【答案】 3
    三、解答题
    8.求圆心为(2,1)且与已知圆x2+y2-3x=0的公共弦所在直线经过点(5,-2)的圆的方程.
    【解】 设所求圆的方程为(x-2)2+(y-1)2=r2,
    即x2+y2-4x-2y+5-r2=0,①
    已知圆的方程为x2+y2-3x=0,②
    ②-①得公共弦所在直线的方程为x+2y-5+r2=0,又此直线经过点(5,-2),∴5-4-5+r2=0,∴r2=4,故所求圆的方程为(x-2)2+(y-1)2=4.
    9.有相距100 km的A,B两个批发市场,商品的价格相同,但在某地区居民从两地运回商品时,A地的单位距离的运费是B地的2倍.问怎样确定A,B两批发市场的售货区域对当地居民有利?
    【导学号:09960144】
    【解】 建立以AB所在直线为x轴,AB中点为原点的直角坐标系,则A(-50,0),B(50,0).
    设P(x,y),由2|PA|=|PB|,得x2+y2+x+2 500=0,
    所以在圆x2+y2+x+2 500=0内到A地购物合算;在圆x2+y2+x+2 500=0外到B地购物合算;在圆x2+y2+x+2 500=0上到A,B两地购物一样合算.
    [自我挑战]
    10.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0相交的公共弦为直径的圆的方程为(  )
    A.(x-1)2+(y-1)2=1
    B.(x+1)2+(y+1)2=1
    C.2+2=
    D.2+2=
    【解析】 两圆方程相减得公共弦所在直线的方程为x-y=0,因此所求圆的圆心的横、纵坐标相等,排除C,D选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B.
    【答案】 B
    11.设半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东,B向北,A出村后不久改变前进方向,斜着沿切于村落圆周的方向前进,后来恰好与B相遇,设A、B两人的速度一定,其比为3∶1,问A、B两人在何处相遇?
    【解】 由题意以村中心为原点,正东方向为x轴的正方向,正北为y轴的正方向,建立直角坐标系,设A、B两人的速度分别为3v km/h,v km/h,设A出发a h,在P处改变方向,又经过b h到达相遇点Q,
    则|PQ|=3bv,|OP|=3av,|OQ|=(a+b)v,
    则P(3av,0),Q(0,(a+b)v),
    在Rt△OPQ中,由|PQ|2=|OP|2+|OQ|2得5a=4b,
    kPQ=,∴kPQ=-,
    设直线PQ的方程为y=-x+c(c>0),
    由PQ与圆x2+y2=9相切,得=3,
    解得c=,故A、B两人相遇在正北方离村落中心 km.
    标签
    152911179

    152911179

    0

    0

    0

    img

    高中数学人教A版必修二 第四章 圆与方程 学业分层测评24 Word版含答案

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!