本文由 967554 收集发布,转载请注明出处,如有问题请联系我们!高中数学 离散型随机变量的均值教案 新人教版选修2-3
2.3离散型随机变量的均值与方差
2.3.1离散型随机变量的均值
教学目标:
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.
过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的均值或期望的概念
教学难点:根据离散型随机变量的分布列求出均值或期望
授课类型:新授课
课时安排:1课时
教学过程:
一、复习引入:
1.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ
0
1
…
k
…
n
P
…
…
称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
二、讲解新课:
根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望
根据射手射击所得环数ξ的分布列,
我们可以估计,在n次射击中,预计大约有
次得4环;
次得5环;
…………
次得10环.
故在n次射击的总环数大约为
,
从而,预计n次射击的平均环数约为
.
这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.
对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:
….
1. 均值或数学期望:
一般地,若离散型随机变量ξ的概率分布为
ξ
x1
x2
…
xn
…
P
p1
p2
…
pn
…
则称 …… 为ξ的均值或数学期望,简称期望.
2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
3. 平均数、均值:
一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
4. 均值或期望的一个性质:
若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为
ξ
x1
x2
…
xn
…
η
…
…
P
p1
p2
…
pn
…
于是……
=……)……)
=,
由此,我们得到了期望的一个性质:
5.若ξB(n,p),则Eξ=np
证明如下:
∵ ,
∴ 0×+1×+2×+…+k×+…+n×.
又∵ ,
∴ ++…++…+.
故 若ξ~B(n,p),则np.
三、讲解范例:
例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望
解:因为,
所以
例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B(20,0.9),,
由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是:
例3.随机抛掷一枚骰子,求所得骰子点数的期望
解:∵,
=3.5
例4.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.
解:抛掷骰子所得点数ξ的概率分布为
ξ
1
2
3
4
5
6
P
所以
1×+2×+3×+4×+5×+6×
=(1+2+3+4+5+6)×=3.5.
抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.
四、课堂练习:
1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )
A.4; B.5; C.4.5; D.4.75
答案:C
2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
⑴他罚球1次的得分ξ的数学期望;
⑵他罚球2次的得分η的数学期望;
⑶他罚球3次的得分ξ的数学期望.
3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.
五、小结 :
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np
六、布置作业:练习册
七、板书设计(略)
八、教学反思:
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np。
2.3.1离散型随机变量的均值
教学目标:
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.
过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的均值或期望的概念
教学难点:根据离散型随机变量的分布列求出均值或期望
授课类型:新授课
课时安排:1课时
教学过程:
一、复习引入:
1.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ
0
1
…
k
…
n
P
…
…
称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
二、讲解新课:
根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
在n次射击之前,可以根据这个分布列估计n次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望
根据射手射击所得环数ξ的分布列,
我们可以估计,在n次射击中,预计大约有
次得4环;
次得5环;
…………
次得10环.
故在n次射击的总环数大约为
,
从而,预计n次射击的平均环数约为
.
这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.
对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i=0,1,2,…,10),我们可以同样预计他任意n次射击的平均环数:
….
1. 均值或数学期望:
一般地,若离散型随机变量ξ的概率分布为
ξ
x1
x2
…
xn
…
P
p1
p2
…
pn
…
则称 …… 为ξ的均值或数学期望,简称期望.
2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平
3. 平均数、均值:
一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值
4. 均值或期望的一个性质:
若(a、b是常数),ξ是随机变量,则η也是随机变量,它们的分布列为
ξ
x1
x2
…
xn
…
η
…
…
P
p1
p2
…
pn
…
于是……
=……)……)
=,
由此,我们得到了期望的一个性质:
5.若ξB(n,p),则Eξ=np
证明如下:
∵ ,
∴ 0×+1×+2×+…+k×+…+n×.
又∵ ,
∴ ++…++…+.
故 若ξ~B(n,p),则np.
三、讲解范例:
例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望
解:因为,
所以
例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B(20,0.9),,
由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5 所以,他们在测验中的成绩的期望分别是:
例3.随机抛掷一枚骰子,求所得骰子点数的期望
解:∵,
=3.5
例4.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.
解:抛掷骰子所得点数ξ的概率分布为
ξ
1
2
3
4
5
6
P
所以
1×+2×+3×+4×+5×+6×
=(1+2+3+4+5+6)×=3.5.
抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.
四、课堂练习:
1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )
A.4; B.5; C.4.5; D.4.75
答案:C
2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求
⑴他罚球1次的得分ξ的数学期望;
⑵他罚球2次的得分η的数学期望;
⑶他罚球3次的得分ξ的数学期望.
3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.
五、小结 :
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np
六、布置作业:练习册
七、板书设计(略)
八、教学反思:
(1)离散型随机变量的期望,反映了随机变量取值的平均水平;
(2)求离散型随机变量ξ的期望的基本步骤:
①理解ξ的意义,写出ξ可能取的全部值;
②求ξ取各个值的概率,写出分布列;
③根据分布列,由期望的定义求出Eξ 公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np。
- 02-16高中数学教案选修2-2《间接证明》
- 02-16高中数学3.2 简单的三角恒等变换教案 新人教A版必修4
- 02-13高中数学 “杨辉三角”与二项式系数的性质教案 新人教版选修2-3
- 02-13高二上册数学3.1空间向量及其运算第5课时
- 02-12高中数学 条件概率教案 新人教版选修2-3
- 02-11高中数学教案必修三:2.4 线性回归方程(1)
- 02-11高中数学教案必修三:3.4 互斥事件(1)
- 02-11高中数学教案必修三:2.3.2 方差与标准差(2)
- 02-11高中数学1.6 三角函数模型的简单应用教案 新人教A版必修4
- 02-11高二数学教案:第三章 空间向量与立体几何 3.2~09《立体几何中向量方法求角度》(2)(人教A版选修2-1)