本文由 150150jx 收集发布,转载请注明出处,如有问题请联系我们!高中数学选修4-5教案 不等式的证明方法之-综合法与分析法
课 题: 第09课时 不等式的证明方法之二:综合法与分析法
目的要求:
重点难点:
教学过程:
一、引入:
综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。
所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。
以前得到的结论,可以作为证明的根据。特别的,是常常要用到的一个重要不等式。
二、典型例题:
例1、都是正数。求证:
证明:由重要不等式可得
本例的证明是综合法。
例2、设,求证
证法一 分析法
要证成立.
只需证成立,
又因,
只需证成立,
又需证成立,
即需证成立.
而显然成立. 由此命题得证。
证法二 综合法
两边同时加上得
两边同时除以正数得(1)。
读一读:如果用或表示命题P可以推出命题Q(命题Q可以由命题P推出),那么采用分析法的证法一就是 (1)
而采用综合法的证法二就是
如果命题P可以推出命题Q,命题Q也可以推出命题P,即同时有,那么我们就说命题P与命题Q等价,并记为在例2中,由于都是正数,实际上
例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只需证明。
证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。
为了证明上式成立,只需证明。
两边同乘以正数,得:。
因此,只需证明。
上式显然成立,所以 。
这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。
例5、证明:。
证法一 因为 (2)
(3)
(4)
所以三式相加得 (5)
两边同时除以2即得(1)。
证法二 因为
所以(1)成立。
例6、证明: (1)
证明 (1) (2)
(3)
(4)
(5)
(5)显然成立。因此(1)成立。
例7、已知都是正数,求证并指出等号在什么时候成立?
分析:本题可以考虑利用因式分解公式
着手。
证明:
=
=
由于都是正数,所以而,
可知
即(等号在时成立)
探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:
,其中是互不相等的正数,且.
三、小结:
解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。
四、练习:
1、已知求证:
2、已知求证
五、作业:
目的要求:
重点难点:
教学过程:
一、引入:
综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法。由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点。
所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式。而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中。前一种是“由因及果”,后一种是“执果索因”。打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。
以前得到的结论,可以作为证明的根据。特别的,是常常要用到的一个重要不等式。
二、典型例题:
例1、都是正数。求证:
证明:由重要不等式可得
本例的证明是综合法。
例2、设,求证
证法一 分析法
要证成立.
只需证成立,
又因,
只需证成立,
又需证成立,
即需证成立.
而显然成立. 由此命题得证。
证法二 综合法
两边同时加上得
两边同时除以正数得(1)。
读一读:如果用或表示命题P可以推出命题Q(命题Q可以由命题P推出),那么采用分析法的证法一就是 (1)
而采用综合法的证法二就是
如果命题P可以推出命题Q,命题Q也可以推出命题P,即同时有,那么我们就说命题P与命题Q等价,并记为在例2中,由于都是正数,实际上
例4、证明:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形为,截面积为。所以本题只需证明。
证明:设截面的周长为,则截面是圆的水管的截面面积为,截面是正方形的水管的截面面积为。只需证明:。
为了证明上式成立,只需证明。
两边同乘以正数,得:。
因此,只需证明。
上式显然成立,所以 。
这就证明了:通过水管放水,当流速相同时,如果水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。
例5、证明:。
证法一 因为 (2)
(3)
(4)
所以三式相加得 (5)
两边同时除以2即得(1)。
证法二 因为
所以(1)成立。
例6、证明: (1)
证明 (1) (2)
(3)
(4)
(5)
(5)显然成立。因此(1)成立。
例7、已知都是正数,求证并指出等号在什么时候成立?
分析:本题可以考虑利用因式分解公式
着手。
证明:
=
=
由于都是正数,所以而,
可知
即(等号在时成立)
探究:如果将不等式中的分别用来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:
,其中是互不相等的正数,且.
三、小结:
解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。这些方法,也是利用综合法和分析法证明不等式时常常用到的技巧。
四、练习:
1、已知求证:
2、已知求证
五、作业:
- 12-04高中数学选修4-5教案 几个著名的不等式之-柯西不等式
- 12-04高二人教A版必修5系列教案 二元一次不等式(组与简单的线性规划问题2
- 12-04高二人教A版必修5系列教案 一元二次不等式及其解法 第一课时
- 12-04高中数学 数列的概念与简单表示法(一)示范教案 新人教A版必修5
- 12-03高中数学 一元二次不等式的概念和一元二次不等式解法示范教案 新人教A版必修5
- 12-03高二数学选修4-4教案 极坐标系
- 12-02高二人教A版必修5系列教案 数列的概念与简单表示法(二
- 12-02高中数学选修4-4同步备课教案:2-2圆的参数方程及应用
- 12-02高中数学 等差数列的前n项和(一)示范教案 新人教A版必修5
- 12-01高二人教A版必修5系列教案 正余弦定理的应用