本文由 weixl1988 收集发布,转载请注明出处,如有问题请联系我们!高二人教A版必修5系列教案 正余弦定理的应用
正弦定理、余弦定理的应用(一)
教学目标:
1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;
2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;
3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;
4通过解三角形的应用的学习,提高解决实际问题的能力
教学重点:实际问题向数学问题的转化及解斜三角形的方法
教学难点:实际问题向数学问题转化思路的确定
教学过程:
一.复习回顾:
1.正弦定理:
2.余弦定理:
,
3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用
二、讲解范例:
例1:如图,为了测量河对岸两点间的距离,在河岸这边取点,测得在同一平面内,求之间的距离(精确到)
例2:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间
例3:如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值
三.随堂练习
1.已知两地的距离为两地的距离为,现测得,则两地的距离为 ( )
A. B. C. D.
四.小结
通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力
教学目标:
1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;
2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;
3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;
4通过解三角形的应用的学习,提高解决实际问题的能力
教学重点:实际问题向数学问题的转化及解斜三角形的方法
教学难点:实际问题向数学问题转化思路的确定
教学过程:
一.复习回顾:
1.正弦定理:
2.余弦定理:
,
3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用
二、讲解范例:
例1:如图,为了测量河对岸两点间的距离,在河岸这边取点,测得在同一平面内,求之间的距离(精确到)
例2:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间
例3:如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值
三.随堂练习
1.已知两地的距离为两地的距离为,现测得,则两地的距离为 ( )
A. B. C. D.
四.小结
通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力
- 12-01高二人教A版必修5系列教案 一元二次不等式及其解法5
- 11-30高二人教A版必修5系列教案 余弦定理
- 11-30高二人教A版必修5系列教案 二元一次不等式(组与简单的线性规划问题3
- 11-30高二人教A版必修5系列教案 不等关系与不等式4
- 11-30高二人教A版必修5系列教案 解含参数的不等式
- 11-30高中数学选修4-5教案 指数不等式的解法
- 11-30高中数学选修4-5教案 含有绝对值的不等式的证明
- 11-30高中数学选修4-4同步备课教案:2-1参数方程的概念
- 11-28高中数学 解决有关测量距离的问题示范教案 新人教A版必修5
- 11-26高中数学选修4-4同步备课教案:1-2-1极坐标系的的概念