本文由 wahzg1314 收集发布,转载请注明出处,如有问题请联系我们!高中数学必修5配套练习 等差数列的前n项和 第1课时
第二章 2.3 第1课时
一、选择题
1.设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=( )
A.-6 B.-4
C.-2 D.2
[答案] A
[解析] 本题考查数列的基础知识和运算能力.
⇒⇒.
∴a9=a1+8d=-6.
2.四个数成等差数列,S4=32,a2a3=13,则公差d等于( )
A.8 B.16
C.4 D.0
[答案] A
[解析] ∵a2a3=13,∴=,∴d=-2a1.
又S4=4a1+d=-8a1=32,∴a1=-4,
∴d=8.
3.等差数列{an}中,a3+a7-a10=8,a11-a4=14.记Sn=a1+a2+a3+…+an,则S13=( )
A.168 B.156
C.152 D.286
[答案] D
[解析] ∵,∴,
∴,∴S13=13a1+d=286.
4.在等差数列{an}和{bn}中,a1=25,b1=15,a100+b100=139,则数列{an+bn}的前100项的和为( )
A.0 B.4475
C.8950 D.10 000
[答案] C
[解析] 设cn=an+bn,则c1=a1+b1=40,c100=a100+b100=139,{cn}是等差数列,∴前100项和S100===8950.
5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )
A.5 B.4
C.3 D.2
[答案] C
[解析] 设等差数列为{an},公差为d,
则,
∴5d=15,∴d=3.
6.设Sn是等差数列{an}的前n项和,若=,
则=( )
A.1 B.-1
C.2 D.
[答案] A
[解析] ==×=1,故选A.
二、填空题
7.已知数列{an}的通项公式an=-5n+2,则其前n项和Sn=________.
[答案] -
[解析] ∵an=-5n+2,
∴an-1=-5n+7(n≥2),
∴an-an-1=-5n+2-(-5n+7)=-5(n≥2).
∴数列{an}是首项为-3,公差为-5的等差数列.
∴Sn===-.
8.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=________.
[答案] 24
[解析] ∵S9==72,
∴a1+a9=16,即a1+a1+8d=16,
∴a1+4d=8,
又a2+a4+a9=a1+d+a1+3d+a1+8d
=3(a1+4d)=3×8=24.
三、解答题
9.已知等差数列{an}.
(1)a1=,a15=-,Sn=-5,求n和d;
(2)a1=4,S8=172,求a8和D.
[解析] (1)∵a15=+(15-1)d=-,
∴d=-.
又Sn=na1+·d=-5,
解得n=15,n=-4(舍).
(2)由已知,得S8==,
解得a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.
(1)求通项an;
(2)若Sn=242,求n的值.
[解析] (1)设公差为d,
则a20-a10=10d=20,
∴d=2.
∴a10=a1+9d=a1+18=30,
∴a1=12.
∴an=a1+(n-1)d=12+2(n-1)=2n+10.
(2)Sn==
=n2+11n=242,
∴n2+11n-242=0,
∴n=11.
一、选择题
1.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是( )
A.S7 B.S8
C.S13 D.S15
[答案] C
[解析] ∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.
2.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于( )
A.12 B.18
C.24 D.42
[答案] C
[解析] ∵S2,S4-S2,S6-S4成等差数列,
∴2(S4-S2)=S2+S6-S4,
∴2(10-2)=2+S6-10,∴S6=24.
3.设Sn是等差数列{an}的前n项和,若=,则等于( )
A. B.
C. D.
[答案] A
[解析] 据等差数列前n项和性质可知:S3,S6-S3,S9-S6,S12-S9仍成等差数列.
设S3=k,则S6=3k,S6-S3=2k,
∴S9-S6=3k,S12-S9=4k,
∴S9=S6+3k=6k,S12=S9+4k=10k,
∴==.
4.(2013·新课标Ⅰ理,7)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A.3 B.4
C.5 D.6
[答案] C
[解析] 本题考查数列的前n项和Sn与通项an的关系及等差数列的定义.
Sm-Sm-1=am=2,Sm+1-Sm=am+1=3,
∴d=am+1-am=3-2=1.
Sm=a1m+·1=0, ①
am=a1+(m-1)·1=2,
∴a1=3-m. ②
②代入①得3m-m2+-=0,
∴m=0(舍去),m=5,故选C.
二、填空题
5.已知等差数列{an}的前n项和为Sn,若=a1+a200,且A、B、C三点共线(该直线不过原点O),则S200=________.
[答案] 100
[解析] ∵=a1+a200,且A、B、C三点共线,
∴a1+a200=1,
∴S200==100.
6.已知数列{an}的前n项和为Sn,且Sn=2an-2,则S3等于________.
[答案] 14
[解析] 对于Sn=2an-2,当n=1时,有a1=2a1-2,解得a1=2;当n=2时,有S2=2a2-2,即a1+a2=2a2-2,所以a2=a1+2=4;当n=3时,有S3=2a3-2,即a1+a2+a3=2a3-2,所以a3=a2+a1+2,又a1=2,a2=4,则a3=8,所以S3=2a3-2=14.
三、解答题
7.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.
[解析] 设等差数列{an}的公差为d,前n项和为Sn,则
Sn=na1+D.
由已知得
①×10-②整理得d=-,代入①得,a1=,
∴S110=110a1+d
=110×+×
=110
=-110.
8.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{}的前n项和,求数列{}的前n项和Tn.
[解析] 设等差数列{an}的公差为d,则
Sn=na1+n(n-1)D.
∵S7=7,S15=75,∴,即,
解得a1=-2,d=1.
∴=a1+(n-1)d=-2+(n-1),
∵-=,
∴数列{}是等差数列,其首项为-2,公差为,
∴Tn=n2-n.
一、选择题
1.设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=( )
A.-6 B.-4
C.-2 D.2
[答案] A
[解析] 本题考查数列的基础知识和运算能力.
⇒⇒.
∴a9=a1+8d=-6.
2.四个数成等差数列,S4=32,a2a3=13,则公差d等于( )
A.8 B.16
C.4 D.0
[答案] A
[解析] ∵a2a3=13,∴=,∴d=-2a1.
又S4=4a1+d=-8a1=32,∴a1=-4,
∴d=8.
3.等差数列{an}中,a3+a7-a10=8,a11-a4=14.记Sn=a1+a2+a3+…+an,则S13=( )
A.168 B.156
C.152 D.286
[答案] D
[解析] ∵,∴,
∴,∴S13=13a1+d=286.
4.在等差数列{an}和{bn}中,a1=25,b1=15,a100+b100=139,则数列{an+bn}的前100项的和为( )
A.0 B.4475
C.8950 D.10 000
[答案] C
[解析] 设cn=an+bn,则c1=a1+b1=40,c100=a100+b100=139,{cn}是等差数列,∴前100项和S100===8950.
5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )
A.5 B.4
C.3 D.2
[答案] C
[解析] 设等差数列为{an},公差为d,
则,
∴5d=15,∴d=3.
6.设Sn是等差数列{an}的前n项和,若=,
则=( )
A.1 B.-1
C.2 D.
[答案] A
[解析] ==×=1,故选A.
二、填空题
7.已知数列{an}的通项公式an=-5n+2,则其前n项和Sn=________.
[答案] -
[解析] ∵an=-5n+2,
∴an-1=-5n+7(n≥2),
∴an-an-1=-5n+2-(-5n+7)=-5(n≥2).
∴数列{an}是首项为-3,公差为-5的等差数列.
∴Sn===-.
8.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=________.
[答案] 24
[解析] ∵S9==72,
∴a1+a9=16,即a1+a1+8d=16,
∴a1+4d=8,
又a2+a4+a9=a1+d+a1+3d+a1+8d
=3(a1+4d)=3×8=24.
三、解答题
9.已知等差数列{an}.
(1)a1=,a15=-,Sn=-5,求n和d;
(2)a1=4,S8=172,求a8和D.
[解析] (1)∵a15=+(15-1)d=-,
∴d=-.
又Sn=na1+·d=-5,
解得n=15,n=-4(舍).
(2)由已知,得S8==,
解得a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.
(1)求通项an;
(2)若Sn=242,求n的值.
[解析] (1)设公差为d,
则a20-a10=10d=20,
∴d=2.
∴a10=a1+9d=a1+18=30,
∴a1=12.
∴an=a1+(n-1)d=12+2(n-1)=2n+10.
(2)Sn==
=n2+11n=242,
∴n2+11n-242=0,
∴n=11.
一、选择题
1.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是( )
A.S7 B.S8
C.S13 D.S15
[答案] C
[解析] ∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.
2.等差数列{an}的前n项和为Sn,若S2=2,S4=10,则S6等于( )
A.12 B.18
C.24 D.42
[答案] C
[解析] ∵S2,S4-S2,S6-S4成等差数列,
∴2(S4-S2)=S2+S6-S4,
∴2(10-2)=2+S6-10,∴S6=24.
3.设Sn是等差数列{an}的前n项和,若=,则等于( )
A. B.
C. D.
[答案] A
[解析] 据等差数列前n项和性质可知:S3,S6-S3,S9-S6,S12-S9仍成等差数列.
设S3=k,则S6=3k,S6-S3=2k,
∴S9-S6=3k,S12-S9=4k,
∴S9=S6+3k=6k,S12=S9+4k=10k,
∴==.
4.(2013·新课标Ⅰ理,7)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A.3 B.4
C.5 D.6
[答案] C
[解析] 本题考查数列的前n项和Sn与通项an的关系及等差数列的定义.
Sm-Sm-1=am=2,Sm+1-Sm=am+1=3,
∴d=am+1-am=3-2=1.
Sm=a1m+·1=0, ①
am=a1+(m-1)·1=2,
∴a1=3-m. ②
②代入①得3m-m2+-=0,
∴m=0(舍去),m=5,故选C.
二、填空题
5.已知等差数列{an}的前n项和为Sn,若=a1+a200,且A、B、C三点共线(该直线不过原点O),则S200=________.
[答案] 100
[解析] ∵=a1+a200,且A、B、C三点共线,
∴a1+a200=1,
∴S200==100.
6.已知数列{an}的前n项和为Sn,且Sn=2an-2,则S3等于________.
[答案] 14
[解析] 对于Sn=2an-2,当n=1时,有a1=2a1-2,解得a1=2;当n=2时,有S2=2a2-2,即a1+a2=2a2-2,所以a2=a1+2=4;当n=3时,有S3=2a3-2,即a1+a2+a3=2a3-2,所以a3=a2+a1+2,又a1=2,a2=4,则a3=8,所以S3=2a3-2=14.
三、解答题
7.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.
[解析] 设等差数列{an}的公差为d,前n项和为Sn,则
Sn=na1+D.
由已知得
①×10-②整理得d=-,代入①得,a1=,
∴S110=110a1+d
=110×+×
=110
=-110.
8.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{}的前n项和,求数列{}的前n项和Tn.
[解析] 设等差数列{an}的公差为d,则
Sn=na1+n(n-1)D.
∵S7=7,S15=75,∴,即,
解得a1=-2,d=1.
∴=a1+(n-1)d=-2+(n-1),
∵-=,
∴数列{}是等差数列,其首项为-2,公差为,
∴Tn=n2-n.
- 03-18高中数学版必修五 第一章解三角形 学业分层测评1 Word版含答案
- 03-13高中数学必修5配套练习 一元二次不等式及其解法 第2课时
- 03-12高中数学选修4-1学业分层测评3 相似三角形的判定 Word版含解析
- 03-12高中数学选修4-1学业分层测评10 与圆有关的比例线段 Word版含解析
- 03-10高中数学必修5配套练习 等差数列 第2课时
- 03-09高中数学选修4-4阶段质量检测(一) B卷 Word版含解析
- 03-06高中数学选修4-1阶段质量检测(二) B卷 Word版含解析
- 03-06高中数学选修4-4模块检测卷(二) Word版含解析
- 03-06高中数学选修4-1阶段质量检测(一) B卷 Word版含解析
- 03-05高中数学必修5配套练习 数列的概念与简单表示法