本文由 zmxnnjx 收集发布,转载请注明出处,如有问题请联系我们!高中数学选修4-5学业分层测评4 Word版含答案
学业分层测评(四)
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a,b,c∈R,且a>b>c,则有( )
A.|a|>|b|>|c| B.|ab|>|bc|
C.|a+b|>|b+c| D.|a-c|>|a-b|
【解析】 当a,b,c均为负数时,则A,B,C均不成立,
如a=-1,b=-2,c=-3时,有|a|<|b|<|c|,故A错;
|ab|=2,而|bc|=6,此时|ab|<|bc|,故B错;
|a+b|=3,|b+c|=5,与C中|a+b|>|b+c|矛盾,故C错;只有D正确.故选D.
【答案】 D
2.已知|a|≠|b|,m=,n=,则m,n之间的大小关系为( )
A.m>n B.mC.m=n D.m≤n
【解析】 由|a|-|b|≤|a±b|≤|a|+|b|,得≤1,≥1.
【答案】 D
3.已知a,b∈R,ab>0,则下列不等式中不正确的是( )
A.|a+b|>a-b B.2≤|a+b|
C.|a+b|<|a|+|b| D.≥2
【解析】 当ab>0时,|a+b|=|a|+|b|,C错.
【答案】 C
4.若|a-c|<b,则下列不等式不成立的是( )
A.|a|<|b|+|c| B.|c|<|a|+|b|
C.b>||c|-|a|| D.b<||a|-|c||
【解析】 b>|a-c|>|a|-|c|,
b>|a-c|>|c|-|a|,故A,B成立,
∴b>||a|-|c||,故C成立.
应选D(此题代入数字也可判出).
【答案】 D
5.“|x-a|<m且|y-a|<m”是“|x-y|<2m”(x,y,a,m∈R)的( )
【导学号:32750020】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 ∵|x-a|<m,|y-a|<m,
∴|x-a|+|y-a|<2m.
又∵|(x-a)-(y-a)|≤|x-a|+|y-a|,
∴|x-y|<2m,但反过来不一定成立,
如取x=3,y=1,a=-2,m=2.5,|3-1|<2×2.5,
但|3-(-2)|>2.5,|1-(-2)|>2.5,
∴|x-y|<2m不一定有|x-a|<m且|y-a|<m,故“|x-a|<m且|y-a|<m”是“|x-y|<2m(x,y,a,m∈R)”的充分不必要条件.
【答案】 A
二、填空题
6.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.
【解析】 因为a,b∈R,则|a-b|>2,其几何意义是数轴上表示数a,b的两点间距离大于2,|x-a|+|x-b|的几何意义为数轴上任意一点到a,b两点的距离之和,当x处于a,b之间时|x-a|+|x-b|取最小值,距离恰为a,b两点间的距离,由题意知其恒大于2,故原不等式解集为R.
【答案】 R
7.下列四个不等式:
①logx10+lg x≥2(x>1);
②|a-b|<|a|+|b|;③≥2(ab≠0);
④|x-1|+|x-2|≥1.
其中恒成立的是________(填序号).
【解析】 logx10+lg x=+lg x≥2,①正确.
ab≤0时,|a-b|=|a|+|b|,②不正确;
∵ab≠0,与同号,
∴=+≥2,③正确;
由|x-1|+|x-2|的几何意义知
|x-1|+|x-2|≥1恒成立,④也正确.
综上,①③④正确.
【答案】 ①③④
8.已知α,β是实数,给出三个论断:
①|α+β|=|α|+|β|;
②|α+β|>5;
③|α|>2,|β|>2.
以其中的两个论断为条件,另一个论断作为结论,写出你认为正确的一个命题是________.
【解析】 ①,③成立时,则|α+β|=|α|+|β|>4>5.
【答案】 ①③⇒②
三、解答题
9.设ε>0,|x-a|<,|y-b|<.求证:|2x+3y-2a-3b|<ε.
【证明】 ∵|2x+3y-2a-3b|=|2(x-a)+3(y-b)|≤2|x-a|+3|y-b|<2×+3×=ε.
10.设函数f(x)=+|x-a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.
【解】 (1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2,所以f(x)≥2.
(2)f(3)=+|3-a|.
当a>3时,f(3)=a+,由f(3)<5,得3当0综上,a的取值范围是.
[能力提升]
1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1| 的最小值为( )
A.1 B.2
C.3 D.4
【解析】 ∵x,y∈R,∴|x-1|+|x|≥|(x-1)-x|=1,
|y-1|+|y+1|≥|(y-1)-(y+1)|=2,
∴|x-1|+|x|+|y-1|+|y+1|≥3.
∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
【答案】 C
2.以下三个命题:
(1)若|a-b|<1,则|a|<|b|+1;
(2)若a,b∈R,则|a+b|-2|a|≤|a-b|;
(3)若|x|<2,|y|>3,则<.
其中正确的有________个.
【解析】 (1)1>|a-b|≥|a|-|b|,
∴1+|b|>|a|成立,(1)正确;
(2)|a+b|-2|a|=|a+b|-|2a|≤|a+b-2a|=|a-b|正确;
(3)=<<,正确.
【答案】 3
3.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.
【导学号:32750021】
【解析】 |x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.
【答案】 -2≤a≤4
4.若1<a<8,-4<b<2,则a-|b|的取值范围是____________.
【解析】 ∵-4<b<2,则0≤|b|<4,∴-4<-|b|≤0.
又∵1<a<8,∴-3<a-|b|<8.
【答案】 (-3,8)
5.设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.
【证明】 因为|x-1|<,|y-2|<,
所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×+=a.
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a,b,c∈R,且a>b>c,则有( )
A.|a|>|b|>|c| B.|ab|>|bc|
C.|a+b|>|b+c| D.|a-c|>|a-b|
【解析】 当a,b,c均为负数时,则A,B,C均不成立,
如a=-1,b=-2,c=-3时,有|a|<|b|<|c|,故A错;
|ab|=2,而|bc|=6,此时|ab|<|bc|,故B错;
|a+b|=3,|b+c|=5,与C中|a+b|>|b+c|矛盾,故C错;只有D正确.故选D.
【答案】 D
2.已知|a|≠|b|,m=,n=,则m,n之间的大小关系为( )
A.m>n B.m
【解析】 由|a|-|b|≤|a±b|≤|a|+|b|,得≤1,≥1.
【答案】 D
3.已知a,b∈R,ab>0,则下列不等式中不正确的是( )
A.|a+b|>a-b B.2≤|a+b|
C.|a+b|<|a|+|b| D.≥2
【解析】 当ab>0时,|a+b|=|a|+|b|,C错.
【答案】 C
4.若|a-c|<b,则下列不等式不成立的是( )
A.|a|<|b|+|c| B.|c|<|a|+|b|
C.b>||c|-|a|| D.b<||a|-|c||
【解析】 b>|a-c|>|a|-|c|,
b>|a-c|>|c|-|a|,故A,B成立,
∴b>||a|-|c||,故C成立.
应选D(此题代入数字也可判出).
【答案】 D
5.“|x-a|<m且|y-a|<m”是“|x-y|<2m”(x,y,a,m∈R)的( )
【导学号:32750020】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 ∵|x-a|<m,|y-a|<m,
∴|x-a|+|y-a|<2m.
又∵|(x-a)-(y-a)|≤|x-a|+|y-a|,
∴|x-y|<2m,但反过来不一定成立,
如取x=3,y=1,a=-2,m=2.5,|3-1|<2×2.5,
但|3-(-2)|>2.5,|1-(-2)|>2.5,
∴|x-y|<2m不一定有|x-a|<m且|y-a|<m,故“|x-a|<m且|y-a|<m”是“|x-y|<2m(x,y,a,m∈R)”的充分不必要条件.
【答案】 A
二、填空题
6.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.
【解析】 因为a,b∈R,则|a-b|>2,其几何意义是数轴上表示数a,b的两点间距离大于2,|x-a|+|x-b|的几何意义为数轴上任意一点到a,b两点的距离之和,当x处于a,b之间时|x-a|+|x-b|取最小值,距离恰为a,b两点间的距离,由题意知其恒大于2,故原不等式解集为R.
【答案】 R
7.下列四个不等式:
①logx10+lg x≥2(x>1);
②|a-b|<|a|+|b|;③≥2(ab≠0);
④|x-1|+|x-2|≥1.
其中恒成立的是________(填序号).
【解析】 logx10+lg x=+lg x≥2,①正确.
ab≤0时,|a-b|=|a|+|b|,②不正确;
∵ab≠0,与同号,
∴=+≥2,③正确;
由|x-1|+|x-2|的几何意义知
|x-1|+|x-2|≥1恒成立,④也正确.
综上,①③④正确.
【答案】 ①③④
8.已知α,β是实数,给出三个论断:
①|α+β|=|α|+|β|;
②|α+β|>5;
③|α|>2,|β|>2.
以其中的两个论断为条件,另一个论断作为结论,写出你认为正确的一个命题是________.
【解析】 ①,③成立时,则|α+β|=|α|+|β|>4>5.
【答案】 ①③⇒②
三、解答题
9.设ε>0,|x-a|<,|y-b|<.求证:|2x+3y-2a-3b|<ε.
【证明】 ∵|2x+3y-2a-3b|=|2(x-a)+3(y-b)|≤2|x-a|+3|y-b|<2×+3×=ε.
10.设函数f(x)=+|x-a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.
【解】 (1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2,所以f(x)≥2.
(2)f(3)=+|3-a|.
当a>3时,f(3)=a+,由f(3)<5,得3当0综上,a的取值范围是.
[能力提升]
1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1| 的最小值为( )
A.1 B.2
C.3 D.4
【解析】 ∵x,y∈R,∴|x-1|+|x|≥|(x-1)-x|=1,
|y-1|+|y+1|≥|(y-1)-(y+1)|=2,
∴|x-1|+|x|+|y-1|+|y+1|≥3.
∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
【答案】 C
2.以下三个命题:
(1)若|a-b|<1,则|a|<|b|+1;
(2)若a,b∈R,则|a+b|-2|a|≤|a-b|;
(3)若|x|<2,|y|>3,则<.
其中正确的有________个.
【解析】 (1)1>|a-b|≥|a|-|b|,
∴1+|b|>|a|成立,(1)正确;
(2)|a+b|-2|a|=|a+b|-|2a|≤|a+b-2a|=|a-b|正确;
(3)=<<,正确.
【答案】 3
3.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.
【导学号:32750021】
【解析】 |x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.
【答案】 -2≤a≤4
4.若1<a<8,-4<b<2,则a-|b|的取值范围是____________.
【解析】 ∵-4<b<2,则0≤|b|<4,∴-4<-|b|≤0.
又∵1<a<8,∴-3<a-|b|<8.
【答案】 (-3,8)
5.设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.
【证明】 因为|x-1|<,|y-2|<,
所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×+=a.
- 02-15高中数学选修4-5综合质量评估
- 02-15高中数学选修4-5练习:第二讲2.1比较法 Word版含解析
- 02-11高中数学选修4-4课时跟踪检测(九) 参数方程和普通方程的互化 Word版含解析
- 02-10高中数学必修5练习:第二章 数列 过关检测 Word版含解析
- 02-10人教版高中数学选修4-4练习:第二讲四渐开线与摆线 Word版含解析
- 02-10高中数学选修4-4课时跟踪检测(十二) 直线的参数方程 Word版含解析
- 02-10高中数学必修5练习 简单的线性规划问题(一) Word版含解析
- 02-10高中数学必修5练习:第三章 不等式 章末检测(A) Word版含解析
- 02-10高中数学必修5配套练习 不等关系与不等式 第1课时
- 02-08高中数学选修4-5学业分层测评11 Word版含答案