本文由 艺美科技网 收集发布,转载请注明出处,如有问题请联系我们!高中数学选修4-4同步备课教案:2-3-2圆锥曲线参数方程的应用
第四课时 圆锥曲线参数方程的应用
一、教学目标:
知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题
过程与方法:选择适当的参数方程求最值。
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:选择适当的参数方程求最值。
教学难点:正确使用参数式来求解最值问题
三、教学模式:讲练结合,探析归纳
四、教学过程:
(一)、复习引入:
通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。
(二)、讲解新课:
例1、双曲线 的两焦点坐标是 。
答案:(0,-4),(0,4)。学生练习。
例2、方程(t为参数)的图形是 双曲线右支 。*科*网]
学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。
例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。
分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。
学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】
(三)、巩固训练
1、直线与圆相切,那么直线的倾斜角为(A)
A.或 B.或 C.或 D.或
2、椭圆 ()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的范围。
3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。
4、设P为等轴双曲线上的一点,,为两个焦点,证明
5、求直线与圆的交点坐标。
解:把直线的参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。
(三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。
(四)、作业:
练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。
五、教学反思:
一、教学目标:
知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题
过程与方法:选择适当的参数方程求最值。
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:选择适当的参数方程求最值。
教学难点:正确使用参数式来求解最值问题
三、教学模式:讲练结合,探析归纳
四、教学过程:
(一)、复习引入:
通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。
(二)、讲解新课:
例1、双曲线 的两焦点坐标是 。
答案:(0,-4),(0,4)。学生练习。
例2、方程(t为参数)的图形是 双曲线右支 。*科*网]
学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。
例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。
分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。
学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】
(三)、巩固训练
1、直线与圆相切,那么直线的倾斜角为(A)
A.或 B.或 C.或 D.或
2、椭圆 ()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的范围。
3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。
4、设P为等轴双曲线上的一点,,为两个焦点,证明
5、求直线与圆的交点坐标。
解:把直线的参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。
(三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。
(四)、作业:
练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。
五、教学反思: