本文由 ws5201314 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版数学必修一教案2.3幂函数
2.3 幂函数
一.教学目标:
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
二.重点、难点
重点:从五个具体的幂函数中认识的概念和性质
难点:从幂函数的图象中概括其性质
5.学法与教具
(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;
(2)教学用具:多媒体
三.教学过程:
引入新知
阅读教材P77的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1 (2)求平方 (3)求立方
(4)求算术平方根 (5)求-1次方
2、上述的问题涉及到的函数,都是形如:,其中是自变量,是常数.
探究新知
1.幂函数的定义
一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.
2.研究函数的图像
(1) (2) (3)
(4) (5)
一.提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.
让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质.
通过观察图像,填P91探究中的表格
定义域
R
R
R
奇偶性
奇
奇
奇
非奇非偶
奇
在第Ⅰ象限单调增减性
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递减
定点
(1,1)
(1,1)
(1,1)
(1,1)
(1,1)
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:);
(2)>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).
特别地,当>1,>1时,∈(0,1),的图象都在图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,∈(0,1),的图象都在的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.
在第一家限内,当向原点靠近时,图象在轴的右方无限逼近轴正半轴,当慢慢地变大时,图象在轴上方并无限逼近轴的正半轴.
例题:
1.证明幂函数上是增函数
证:任取<则
=
=
因<0,>0
所以,即上是增函数.
思考:
我们知道,若得,你能否用这种作比的方法来证明上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小
(1) (2) (3)
分析:利用幂函数的单调性来比较大小.
5.课堂练习
画出的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.
6.归纳小结:提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?
(2)你能根据函数图象说出有关幂函数的性质吗?
作业:P79 习题 2.3 第2、3 题
一.教学目标:
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
二.重点、难点
重点:从五个具体的幂函数中认识的概念和性质
难点:从幂函数的图象中概括其性质
5.学法与教具
(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;
(2)教学用具:多媒体
三.教学过程:
引入新知
阅读教材P77的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1 (2)求平方 (3)求立方
(4)求算术平方根 (5)求-1次方
2、上述的问题涉及到的函数,都是形如:,其中是自变量,是常数.
探究新知
1.幂函数的定义
一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.
2.研究函数的图像
(1) (2) (3)
(4) (5)
一.提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.
让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质.
通过观察图像,填P91探究中的表格
定义域
R
R
R
奇偶性
奇
奇
奇
非奇非偶
奇
在第Ⅰ象限单调增减性
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递增
在第Ⅰ象限单调递减
定点
(1,1)
(1,1)
(1,1)
(1,1)
(1,1)
3.幂函数性质
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:);
(2)>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).
特别地,当>1,>1时,∈(0,1),的图象都在图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α<1时,∈(0,1),的图象都在的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)
(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.
在第一家限内,当向原点靠近时,图象在轴的右方无限逼近轴正半轴,当慢慢地变大时,图象在轴上方并无限逼近轴的正半轴.
例题:
1.证明幂函数上是增函数
证:任取<则
=
=
因<0,>0
所以,即上是增函数.
思考:
我们知道,若得,你能否用这种作比的方法来证明上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小
(1) (2) (3)
分析:利用幂函数的单调性来比较大小.
5.课堂练习
画出的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.
6.归纳小结:提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?
(2)你能根据函数图象说出有关幂函数的性质吗?
作业:P79 习题 2.3 第2、3 题
- 02-22教案高一数学人教版必修二 3.2.1直线的点斜式方程
- 02-18高一上册数学人教A版选修1-1教案:2.1.1椭圆定义及其标准方程1(含答案)
- 02-18高一下册数学3.2.1复数代数形式的加减运算及其几何意义
- 02-18高中数学 1.1.3 集合的基本运算教案 新人教A版必修1
- 02-17高一上册数学人教A版数学必修一教案1.3.2函数的奇偶性
- 02-17高中数学 2.2.6双曲线的简单几何性质教案 新人教A版选修1-1
- 02-17高一数学人教A版必修一精品教案:2.2.2对数函数(1) Word版含答案
- 02-17高一数学人教A版必修一精品教案:3.1.2用二分法求方程的近似解 Word版含答案
- 02-16高中数学 2.2.2 对数函数及其性质教案1 新人教A版必修1
- 02-16高一数学人教A版必修一精品教案:2.2.2对数函数(3) Word版含答案