习作分享 好教案logo
首页 高一 高中数学 1.1.3 集合的基本运算教案 新人教A版必修1

本文由 dqzxhjx 收集发布,转载请注明出处,如有问题请联系我们!高中数学 1.1.3 集合的基本运算教案 新人教A版必修1

  • 资源类别:高一教案
  • 所属教版:高一上册数学人教版
  • 文件格式:ppt/doc
  • 大小:61k
  • 浏览次数:1394
  • 整理时间:2021-02-18
  • 1.1.3 集合间的基本运算
    教学目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;
    2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
    3.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;
    4.认识由具体到抽象的思维过程,并树立相对的观点。
    教学重点:交集与并集概念、补集的概念、数形结合的运用。
    教学难点:理解交集与并集概念、符号之间的区别与联系,补集的有关运算
    教学方法:发现式教学法
    教学过程:
    (I)复习回顾
    问题1: (1)分别说明A与A=B的意义;
    (2)说出集合{1,2,3}的子集、真子集个数及表示;
    (II)讲授新课
    问题2:观察下面五个图(投影1),它们与集合A,集合B有什么关系?
    图1—5(1)给出了两个集合A、B;
    图(2)阴影部分是A与B公共部分;
    图(3)阴影部分是由A、B组成;
    图(4)集合A是集合B的真子集;
    图(5)集合B是集合A的真子集;
    指出:图(2)阴影部分叫集合A与B的交集;图(3)阴影部分叫集合A与B的并集.由此可有:
    1.并集:
    一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(union set),即A与B的所有部分,记作A∪B(读作“A并B”),即A∪B={x|x∈A或x∈B}。如上述图(3)中的阴影部分。
    2.交集:
    一般地,由所有属于集合A且属于集合B的所有元素所组成的集合,叫做A与B的交集(intersection set),即A与B的公共部分,记作A∩B(读作“A交B”),即A∩B={x|x∈A且x∈B}。如上述图(2)中的阴影部分。
    3.一些特殊结论
    由图1—5(4)有: 若A,则A∩B=A;
    由图1—5(5)有: 若B,则AB=A;
    特别地,若A,B两集合中,B=,,则A∩=, A=A。
    4.例题解析 (师生共同活动)
    例1.设A={x|x>-2},B={x|x<3},求A∩B。
    [涉及不等式有关问题,利用数形结合即运用数轴是最佳方案](图1—6)
    解:在数轴上作出A、B对应部分如图A∩B={x|x>-2}
    ∩{x|x<3}={x|-2例2.设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B。
    [此题运用文氏图,其公共部分即为A∩B].(图1---7)
    解:A∩B={x|x是等腰三角形}∩{x|x是直角三角形}
    ={x|x是等腰直角三角形}。
    例3.设A={4,5,6,8},B={3,5,7,8},求A∪B。
    [运用文氏图解答该题](图1----8)
    解:A={4,5,6,8},B={3,5,7,8},则A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}。
    例4.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∪B。
    解:A∪B={x|x是锐角三角形}∪{x|x是钝角三角形}={x|x是斜三角形}。
    例5.设A={x|-1[利用数轴,将A、B分别表示出来,则阴影部分即为所求](图1—9)
    解:A∪B={x|-1例6.教材P11例7。
    问题3: 请看下例
    A={班上所有参加足球队同学}
    B={班上没有参加足球队同学}
    S={全班同学}
    那么S、A、B三集合关系如何.
    分析:(借助于文氏图)集合B就是集合S中除去集合A之后余下来的集合,则有
    5.全集
    如果一个集合含有我们所要研究问题中所涉及的全部元素,那么就称这个集合为全集(uniwerse set),记作U。如:解决某些数学问题时,就可以把实数集看作全集U,那么有理数集Q的补集CUQ就是全体无理数的集合。
    6.补集(余集)
    一般地,设U是一个集合,A是U的一个子集(即A⊆S),由U中所有不属于A的元素组成的集合,叫做U中集合A的补集(或余集),记作CUA,即CUA={x|x∈U,且x∉A}
    图1—3阴影部分即表示A在U中补集CUA。
    7.举例说明
    例7、例8见教材P12例8、例9。
    补充例题:解答下列各题:
    (1)若S={2,3,4},A={4,3},则CSA={2} ;
    (2)若S={三角形},B={锐角三角形},则CSB={直角三角形或钝角三角形} ;
    (3)若S={1,2,4,8},A=ø,则CSA= S ;
    (4)若U={1,3,a2+2a+1},A={1,3},CUA={5},则a=-1 ;
    (5)已知A={0,2,4},CUA={-1,1},CUB={-1,0,2},求B={1,4};
    (6)设全集U={2,3,m2+2m-3},A={|m+1|,2},CUA={5},求m的值;(m= - 4或m=2)
    (7)已知全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求CUA、m;(答案:CUA={2,3},m=4;CUA={1,4},m=6)
    (8).已知全集U=R,集合A={x|0(III)课堂练习:
    (1)课本P12练习1—5;
    (2)补充练习:
    1.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B。[A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}]
    2.已知集合M{4,7,8},且M中至多有一个偶数,则这样的集合共有( );
    A 3个 B 4个 C 6个 D5个
    3.设集合A={-1,1}, B={x|x2-2ax+b=0}, 若B, 且B, 求a, b的值。
    (IV) 课时小结
    1.在并交问题求解过程中,充分利用数轴、文恩图。
    2.能熟练求解一个给定集合的补集;
    3.注重一些特殊结论在以后解题中应用。(如:CU(CUA)=A)
    (V)作业
    1.书面作业
    课本P14,习题1.1A组题第7~12题。
    2.复习作业:
    课本P14,习题1.1B组题及后面的“阅读与思考”——集合中元素的个数。
    教学后记











    标签
    dqzxhjx

    dqzxhjx

    0

    0

    0

    标签云

    img

    高中数学 1.1.3 集合的基本运算教案 新人教A版必修1

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!