本文由 A5211314 收集发布,转载请注明出处,如有问题请联系我们!高一下册数学圆的标准方程教案 新人教A版必修2
课题: 2.4.1.1圆的标准方程
课 型:新授课
教学目标: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程:
(一)、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?
探索研究:
(二)、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件 ①
化简可得: ②
引导学生自己证明为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
(三)、知识应用与解题研究
例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点与圆的关系的判断方法:
(1)>,点在圆外
(2)=,点在圆上
(3)<,点在圆内
解:
例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程.
师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.
解:
例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.
师生共同分析: 如图,确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。
解:
总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:
1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程.
②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.
(四)、课堂练习(课本P120练习1,2,3,4)
归纳小结:
1、圆的标准方程。
2、点与圆的位置关系的判断方法。
3、根据已知条件求圆的标准方程的方法。
作业布置:课本习题4.1A组第2,3,4题.
课后记:
课 型:新授课
教学目标: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程:
(一)、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?
探索研究:
(二)、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件 ①
化简可得: ②
引导学生自己证明为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
(三)、知识应用与解题研究
例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点与圆的关系的判断方法:
(1)>,点在圆外
(2)=,点在圆上
(3)<,点在圆内
解:
例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程.
师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.
解:
例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.
师生共同分析: 如图,确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。
解:
总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:
1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程.
②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.
(四)、课堂练习(课本P120练习1,2,3,4)
归纳小结:
1、圆的标准方程。
2、点与圆的位置关系的判断方法。
3、根据已知条件求圆的标准方程的方法。
作业布置:课本习题4.1A组第2,3,4题.
课后记:
- 02-06高一上册数学人教A版选修1-1教案:1.2充分条件和必要条件(1)(含答案)
- 02-06高一下册数学空间几何体的表面积与体积
- 02-06高一上册数学人教A版选修1-1教案:3.2立体几何中的向量方法第3课时(含答案)
- 02-05高一下册数学4.1.1流程图 -5
- 02-04教案高一数学人教版必修二 4.2.3 直线与圆的方程的应用
- 02-04人教A版选修1-1教案:2.2基本初等函数和导数运算法则(含答案)
- 02-04高一上册数学函数模型的应用实例1
- 02-02高中数学 2.2.7双曲线第二定义教案 新人教A版选修1-1
- 02-02高中数学 1.2.1充分条件与必要条件教案 新人教A版选修1-1
- 02-02高中数学 3.1.2导数的概念教案 新人教A版选修1-1