本文由 19851213 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版数学必修一教案2.2.1对数与对数运算(1)
2.2.1 对数与对数运算
第一课时
一.教学目标:
1.知识技能:
①理解对数的概念,了解对数与指数的关系;
②理解和掌握对数的性质;
③掌握对数式与指数式的关系 .
2. 过程与方法:
通过与指数式的比较,引出对数定义与性质 .
3.情感、态度、价值观
(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.
(2)通过对数的运算法则的学习,培养学生的严谨的思维品质 .
(3)在学习过程中培养学生探究的意识.
(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.
二.重点与难点:
(1)重点:对数式与指数式的互化及对数的性质
(2)难点:推导对数性质的
三.学法与教具:
(1)学法:讲授法、讨论法、类比分析与发现
(2)教具:投影仪
四.教学过程:
1.提出问题
思考:(P62思考题)中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?
即:在个式子中,分别等于多少?
象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).
1、对数的概念
一般地,若,那么数叫做以a为底N的对数,记作
叫做对数的底数,N叫做真数.
举例:如:,读作2是以4为底,16的对数.
,则,读作是以4为底2的对数.
提问:你们还能找到那些对数的例子
2、对数式与指数式的互化
在对数的概念中,要注意:
(1)底数的限制>0,且≠1
(2)
指数式对数式
幂底数←→对数底数
指 数←→对数
幂 ←N→真数
说明:对数式可看作一记号,表示底为(>0,且≠1),幂为N的指数工表示方程(>0,且≠1)的解. 也可以看作一种运算,即已知底为(>0,且≠1)幂为N,求幂指数的运算. 因此,对数式又可看幂运算的逆运算.
例题:
例1(P63例1)
将下列指数式化为对数式,对数式化为指数式.
(1)54=645 (2) (3)
(4) (5) (6)
注:(5)、(6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明.
(让学生自己完成,教师巡视指导)
巩固练习:P64 练习 1、2
3.对数的性质:
提问:因为>0,≠1时,
则 由1、0=1 2、1= 如何转化为对数式
②负数和零有没有对数?
③根据对数的定义,=?
(以上三题由学生先独立思考,再个别提问解答)
由以上的问题得到
① (>0,且≠1)
② ∵>0,且≠1对任意的力,常记为.
恒等式:=N
4、两类对数
① 以10为底的对数称为常用对数,常记为.
② 以无理数e=2.71828…为底的对数称为自然对数,常记为.
以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.
说明:在例1中,.
例2:求下列各式中x的值
(1) (2) (3) (4)
分析:将对数式化为指数式,再利用指数幂的运算性质求出x.
解:(1)
(2)
(3)
(4)
所以
课堂练习:P64 练习3、4
补充练习:1. 将下列指数式与对数式互化,有的求出的值 .
(1) (2) (3)
(4) (5) (6)
2.求且不等于1,N>0).
3.计算的值.
4.归纳小结:对数的定义
>0且≠1)
1的对数是零,负数和零没有对数
对数的性质 >0且≠1
作业:P74 习题 2.2 A组 1、2
P75 B组 1
第一课时
一.教学目标:
1.知识技能:
①理解对数的概念,了解对数与指数的关系;
②理解和掌握对数的性质;
③掌握对数式与指数式的关系 .
2. 过程与方法:
通过与指数式的比较,引出对数定义与性质 .
3.情感、态度、价值观
(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.
(2)通过对数的运算法则的学习,培养学生的严谨的思维品质 .
(3)在学习过程中培养学生探究的意识.
(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.
二.重点与难点:
(1)重点:对数式与指数式的互化及对数的性质
(2)难点:推导对数性质的
三.学法与教具:
(1)学法:讲授法、讨论法、类比分析与发现
(2)教具:投影仪
四.教学过程:
1.提出问题
思考:(P62思考题)中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?
即:在个式子中,分别等于多少?
象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).
1、对数的概念
一般地,若,那么数叫做以a为底N的对数,记作
叫做对数的底数,N叫做真数.
举例:如:,读作2是以4为底,16的对数.
,则,读作是以4为底2的对数.
提问:你们还能找到那些对数的例子
2、对数式与指数式的互化
在对数的概念中,要注意:
(1)底数的限制>0,且≠1
(2)
指数式对数式
幂底数←→对数底数
指 数←→对数
幂 ←N→真数
说明:对数式可看作一记号,表示底为(>0,且≠1),幂为N的指数工表示方程(>0,且≠1)的解. 也可以看作一种运算,即已知底为(>0,且≠1)幂为N,求幂指数的运算. 因此,对数式又可看幂运算的逆运算.
例题:
例1(P63例1)
将下列指数式化为对数式,对数式化为指数式.
(1)54=645 (2) (3)
(4) (5) (6)
注:(5)、(6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明.
(让学生自己完成,教师巡视指导)
巩固练习:P64 练习 1、2
3.对数的性质:
提问:因为>0,≠1时,
则 由1、0=1 2、1= 如何转化为对数式
②负数和零有没有对数?
③根据对数的定义,=?
(以上三题由学生先独立思考,再个别提问解答)
由以上的问题得到
① (>0,且≠1)
② ∵>0,且≠1对任意的力,常记为.
恒等式:=N
4、两类对数
① 以10为底的对数称为常用对数,常记为.
② 以无理数e=2.71828…为底的对数称为自然对数,常记为.
以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.
说明:在例1中,.
例2:求下列各式中x的值
(1) (2) (3) (4)
分析:将对数式化为指数式,再利用指数幂的运算性质求出x.
解:(1)
(2)
(3)
(4)
所以
课堂练习:P64 练习3、4
补充练习:1. 将下列指数式与对数式互化,有的求出的值 .
(1) (2) (3)
(4) (5) (6)
2.求且不等于1,N>0).
3.计算的值.
4.归纳小结:对数的定义
>0且≠1)
1的对数是零,负数和零没有对数
对数的性质 >0且≠1
作业:P74 习题 2.2 A组 1、2
P75 B组 1
- 01-05教案高一数学人教版必修二 2.3.2.2平面与平面垂直
- 01-05高一上册数学人教A版选修1-1教案:1.1变化率问题、1.2 导数的概念(含答案)
- 01-04高一上册数学人教A版选修1-1教案:2.2.1双曲线的及其标准方程(含答案)
- 01-02高中数学 1.3.1且 1.3.2或教案 新人教A版选修1-1
- 01-02高一下册数学2.1 合情推理与演绎推理(三)
- 01-01高一下册数学平面与平面垂直的判定教案 新人教A版必修2
- 12-30高一下册数学直线和平面垂直(2)教案 新人教A版必修2
- 12-30高一下册数学空间点、直线、平面之间的位置关系
- 12-30高中数学 3.2.1几个常用函数的导数教案 新人教A版选修1-1
- 12-29高一下册数学点、线、面位置关系复习小结(2)教案 新人教A版必修2