习作分享 好教案logo
首页 高一 高一上册数学人教A版数学必修一教案2.1.2指数函数及其性质(2)

本文由 19891012 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版数学必修一教案2.1.2指数函数及其性质(2)

  • 资源类别:高一教案
  • 所属教版:高一上册数学人教版
  • 文件格式:ppt/doc
  • 大小:77k
  • 浏览次数:1629
  • 整理时间:2020-12-18
  • 
    第2课时
    教学过程:
    1、复习指数函数的图象和性质
    2、例题
    例1:(P57例7)比较下列各题中的个值的大小
    (1)1.72.5 与 1.73
    ( 2 )与
    ( 3 ) 1.70.3 与 0.93.1
    解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .
    解法2:用计算器直接计算:
    所以,
    解法3:由函数的单调性考虑
    因为指数函数在R上是增函数,且2.5<3,所以,
    仿照以上方法可以解决第(2)小题 .
    注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .
    由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .
    思考:
    1、已知按大小顺序排列.
    2. 比较(>0且≠0).
    指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.
    例2(P57例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?
    分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:
    1999年底 人口约为13亿
    经过1年 人口约为13(1+1%)亿
    经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿
    经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿
    经过年 人口约为13(1+1%)亿
    经过20年 人口约为13(1+1%)20亿
    解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则
    当=20时,
    答:经过20年后,我国人口数最多为16亿.
    小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,>0且≠1)的函数称为指数型函数 .
    思考:P58探究:
    (1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .
    (2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .
    (3)你看到我国人口数的增长呈现什么趋势?
    (4)如何看待计划生育政策?
    3.课堂练习
    (1)右图是指数函数① ② ③ ④的图象,判断与1的大小关系;
    (2)设其中>0,≠1,确定为何值时,有:
    ① ②>
    (3)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢与漂洗次数的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).
    归纳小结:本节课研究了指数函数性质的应用,关键是要记住>1或0<<时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a>0且≠1).
    作业:P59 A组第 7 ,8 题    P60 B组 第 1,4题
    标签
    19891012

    19891012

    0

    0

    0

    标签云

    img

    人教A版数学必修一教案2.1.2指数函数及其性质(2)

    下载积分 钻石会员
    1 免费
    请您 登录后 下载 !
    说明

    您下载所消耗的积分将转交上传作者。上传资源,免费获取积分!