本文由 danny369 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版数学必修一教案1.2.2函数的表示法
1.2.2函数的表示法
一.教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情态与价值
让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
三.学法及教学用具
1.学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.
2.教学用具:圆规、三角板、投影仪.
四.教学思路
(一)创设情景,揭示课题.
我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.
(二)研探新知
1.函数有哪些表示方法呢?
(表示函数的方法常用的有:解析法、列表法、图象法三种)
2.明确三种方法各自的特点?
(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况)
(三)质疑答辩,排难解惑,发展思维.
例1.某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.
分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域;
2象法:是否连线;
④列④列表法:选取的自变量要有代表性,应能反映定义域的特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王 伟
98
87
91
92
88
95
张 城
90
76
88
75
86
80
赵 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:
②本例能否用解析法?为什么?
例3.画出函数的图象
解:(略)
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:(略)
注意:
①本例具有实际背景,所以解题时应考虑其实际意义;
②象例3、例4中的函数,称为分段函数.
③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
(四)巩固深化,反馈矫正.
(1)课本P23 练习第1,2,3题
(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0<≤100=的信函应付邮资为(单位:分)
(五)归纳小结
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法。
(六)设置问题,留下悬念.
(1)课本P24习题(A组)8,9;
(2)如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的边长为,面积为,把表示成的函数.
【A组】
1.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是( D ) ( )
A.x=60t B.x=60t+50t
C.x= D.x=
2.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是 ( B )
3. ;若 .答案:0;4
【B组】
1.下列图中,画在同一坐标系中,函数与函数的图象只可能是 ( B )
2.设,则 ( A )
A. B.0 C. D.
【C组】
1.已知f满足f(ab)=f(a)+ f(b),且f(2)=,那么等于 ( B )
A. B. C. D.
2.某地的中国移动“神州行”卡与中国联通130网的收费标准如下表:
网络
月租费
本地话费
长途话费
甲:联通130网
12元
每分钟0.36元
每6秒钟0.06元
乙:移动“神州行”卡
无
每分钟0.6元
每6秒钟0.07元
(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)
若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为 ( A )
A.甲 B.乙 C.甲乙均一样 D.分情况确定
一.教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情态与价值
让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
三.学法及教学用具
1.学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.
2.教学用具:圆规、三角板、投影仪.
四.教学思路
(一)创设情景,揭示课题.
我们在前两节课中,已经学习了函数的定义,会求函数的值域,那么函数有哪些表示的方法呢?这一节课我们研究这一问题.
(二)研探新知
1.函数有哪些表示方法呢?
(表示函数的方法常用的有:解析法、列表法、图象法三种)
2.明确三种方法各自的特点?
(解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况)
(三)质疑答辩,排难解惑,发展思维.
例1.某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.
分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域;
2象法:是否连线;
④列④列表法:选取的自变量要有代表性,应能反映定义域的特征.
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王 伟
98
87
91
92
88
95
张 城
90
76
88
75
86
80
赵 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
①本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点:
②本例能否用解析法?为什么?
例3.画出函数的图象
解:(略)
例4.某市郊空调公共汽车的票价按下列规则制定:
(1)乘坐汽车5公里以内,票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.
解:(略)
注意:
①本例具有实际背景,所以解题时应考虑其实际意义;
②象例3、例4中的函数,称为分段函数.
③分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
(四)巩固深化,反馈矫正.
(1)课本P23 练习第1,2,3题
(2)国内投寄信函(外埠),假设每封信函不超过20,付邮资80分,超过20而不超过40付邮资160分,每封(0<≤100=的信函应付邮资为(单位:分)
(五)归纳小结
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法。
(六)设置问题,留下悬念.
(1)课本P24习题(A组)8,9;
(2)如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形的边长为,面积为,把表示成的函数.
【A组】
1.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是( D ) ( )
A.x=60t B.x=60t+50t
C.x= D.x=
2.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是 ( B )
3. ;若 .答案:0;4
【B组】
1.下列图中,画在同一坐标系中,函数与函数的图象只可能是 ( B )
2.设,则 ( A )
A. B.0 C. D.
【C组】
1.已知f满足f(ab)=f(a)+ f(b),且f(2)=,那么等于 ( B )
A. B. C. D.
2.某地的中国移动“神州行”卡与中国联通130网的收费标准如下表:
网络
月租费
本地话费
长途话费
甲:联通130网
12元
每分钟0.36元
每6秒钟0.06元
乙:移动“神州行”卡
无
每分钟0.6元
每6秒钟0.07元
(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)
若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为 ( A )
A.甲 B.乙 C.甲乙均一样 D.分情况确定
- 12-12高一下册数学立体几何复习小结(1)教案 新人教A版必修2
- 12-08高一上册数学人教A版选修1-1教案:3.2立体几何中的向量方法第2课时(含答案)
- 12-07教案高一数学人教版必修二 3.2.2直线的两点式方程
- 12-03高一下册数学空间直线与平面、平面与平面之间的位置关系教案 新人教A版必修2
- 12-03高一下册数学圆的方程
- 12-01高中数学 1.4.3含有一个量词的命题的否定教案 新人教A版选修1-1
- 11-30高一下册数学圆的一般方程教案 新人教A版必修2
- 11-30高中数学 3.1.1 变化率问题教案 新人教A版选修1-1
- 11-30教案高一数学人教版必修二 3.3.1 两条直线的交点坐标
- 11-30高一数学人教A版必修一精品教案:1.3.1函数的最大(小)值 Word版含答案