本文由 song267900 收集发布,转载请注明出处,如有问题请联系我们!高中数学 3.3.1 函数的单调性与导数教案 新人教A版选修1-1
甘肃省金昌市第一中学2014年高中数学 3.3.1 函数的单调性与导数教案 新人教A版选修1-1
了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会利用导数求函数的单调区间。
2、 过程与方法
通过本节的学习,掌握用导数研究函数单调性的方法。
3、 情感、态度与价值观
通过实例探究函数的单调性与导数的关系。通过这一过程,提高理性思维的能力。
教学重难点
重点:函数单调性和导数的关系;会根据导数判断函数的单调性;会利用导数求出函数的单调区间。
难点:理解并掌握函数的单调性与导数的关系
教学过程
一、 复习引入:
1. 常见函数的导数公式:
;;;
2.法则1 .
法则2 ,
法则3
二、 讲授新课
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在点处的切线的斜率.
在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以 .
当,即 时,函数 ;
当,即 时,函数 ;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数 在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1·x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四、课堂练习:
1.确定下列函数的单调区间
(1)y=x3-9x2+24x (2)y=3x-x3
(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)
令3(x-2)(x-4)>0,解得x>4或x<2.
∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)
令3(x-2)(x-4)<0,解得2<x<4
.∴y=x3-9x2+24x的单调减区间是(2,4)
(2)解:y′=(3x-x3)′=3-3x2=-3(x2-1)=-3(x+1)(x-1)
令-3(x+1)(x-1)>0,解得-1<x<1.
∴y=3x-x3的单调增区间是(-1,1).
令-3(x+1)(x-1)<0,解得x>1或x<-1.
∴y=3x-x3的单调减区间是(-∞,-1)和(1,+∞)
2、设是函数的导数, 的
图象如图所示, 则的图象最有可能是( )
小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?
五、课堂小结 :
1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导,如果f ′(x)>0, 则f(x)为增函数;如果f′(x)<0, 则f(x)为减函数.
2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.
3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.
六、课后作业:
课本 习题3.3 A组 1,2
【思考题】
对于函数f(x)=2x3-6x2+7
思考1、能不能画出该函数的草图?
思考2、在区间(0,2)内有几个解?
1.确定下列函数的单调区间
(1) (2)
2.讨论二次函数y=ax2+bx+c(a>0)的单调区间.
了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会利用导数求函数的单调区间。
2、 过程与方法
通过本节的学习,掌握用导数研究函数单调性的方法。
3、 情感、态度与价值观
通过实例探究函数的单调性与导数的关系。通过这一过程,提高理性思维的能力。
教学重难点
重点:函数单调性和导数的关系;会根据导数判断函数的单调性;会利用导数求出函数的单调区间。
难点:理解并掌握函数的单调性与导数的关系
教学过程
一、 复习引入:
1. 常见函数的导数公式:
;;;
2.法则1 .
法则2 ,
法则3
二、 讲授新课
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
(2)从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在点处的切线的斜率.
在处,,切线是“左下右上”式的,这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以 .
当,即 时,函数 ;
当,即 时,函数 ;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
例4.求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
例5.已知函数 在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
例6.已知函数y=x+,试讨论出此函数的单调区间.
解:y′=(x+)′
=1-1·x-2=
令>0.
解得x>1或x<-1.
∴y=x+的单调增区间是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的单调减区间是(-1,0)和(0,1)
四、课堂练习:
1.确定下列函数的单调区间
(1)y=x3-9x2+24x (2)y=3x-x3
(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)
令3(x-2)(x-4)>0,解得x>4或x<2.
∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)
令3(x-2)(x-4)<0,解得2<x<4
.∴y=x3-9x2+24x的单调减区间是(2,4)
(2)解:y′=(3x-x3)′=3-3x2=-3(x2-1)=-3(x+1)(x-1)
令-3(x+1)(x-1)>0,解得-1<x<1.
∴y=3x-x3的单调增区间是(-1,1).
令-3(x+1)(x-1)<0,解得x>1或x<-1.
∴y=3x-x3的单调减区间是(-∞,-1)和(1,+∞)
2、设是函数的导数, 的
图象如图所示, 则的图象最有可能是( )
小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?
五、课堂小结 :
1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导,如果f ′(x)>0, 则f(x)为增函数;如果f′(x)<0, 则f(x)为减函数.
2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.
3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.
六、课后作业:
课本 习题3.3 A组 1,2
【思考题】
对于函数f(x)=2x3-6x2+7
思考1、能不能画出该函数的草图?
思考2、在区间(0,2)内有几个解?
1.确定下列函数的单调区间
(1) (2)
2.讨论二次函数y=ax2+bx+c(a>0)的单调区间.
- 11-27教案高一数学人教版必修二 2.2.2平面与平面平行的判定
- 11-26高一数学人教A版必修一精品教案:1.2.1函数的概念 Word版含答案
- 11-25高一上册数学人教A版数学必修一教案2.2.2对数函数及其性质(第1、2课时)
- 11-25高中数学 3.2.2 函数模型的应用实例教案 新人教A版必修1
- 11-25高中数学 1.3.2 奇偶性教案 新人教A版必修1
- 11-24高中数学 2.2.10抛物线及标准方程教案 新人教A版选修1-1
- 11-23高一上册数学人教A版选修1-1教案:1.3简单的逻辑联结词(含答案)
- 11-23高一上册数学人教A版选修1-1教案:2.1几个常见函数的导数(含答案)
- 11-23高中数学 3.1.1 方程的根与函数的零点教案 新人教A版必修1
- 11-23高中数学 3.3.2函数的极值与导数教案 新人教A版选修1-1