本文由 7386369 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版选修1-1教案:3.2函数的极值与导数(含答案)
1.3.2函数的极值与导数(1课时)
【学情分析】:
在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。
【教学目标】:
(1)理解极大值、极小值的概念.
(2)能够运用判别极大值、极小值的方法来求函数的极值.
(3)掌握求可导函数的极值的步骤
【教学重点】:
极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
【教学难点】:
极大、极小值概念的理解,熟悉求可导函数的极值的步骤
【教学过程设计】:
教学环节
教学活动
设计意图
利用教材在
3.3.1中的
例1引入函数的极值概念
①观察y=f(x)的图像在x=1点的函数值f(1)与x=1附近的其他点的函数值的特征,并描述在x=1点及其附近导数的正负:
f(1)在x=1点及其附近是最小——;
y=f(x)在x=1附近的左侧是单减的——;
y=f(x)在x=1附近的右侧是单增的——;
提问:y=f(x)在x=1处是否整个函数的最小值?
不是,只是y=f(x)在x=1处附近的局部最小值
②观察y=f(x)的图像在x=4点的函数值f(4)与x=4附近的其他点的函数值的特征,并描述在x=4点及其附近导数的正负:
学生模仿完成
考虑到极值与最值容易混淆,学生对已有知识的同化易接受,我们以3.3.1
中的例1引出极值的概念,具体直观,同时对极值与最值区分是一目了然的。
概念抽象
y=f(x)在定义域上可导,
①若,且y=f(x)在x=a附近的左侧满足;在x=a附近的右侧满足,则称点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值
②若,且y=f(x)在x=b附近的左侧满足;在x=b附近的右侧满足,则称点b叫做y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值
由具体函数图像抽象上升到一般极值概念
函数极值概念强化练习
概念判断练习:
(1)函数的极大值是函数在定义域上的最大值
(2)函数在某个区间或定义域上的极大值是唯一的
(3)函数某区间上的极大值一定大于极小值
(4)函数的极值点,导数一定为零
(5)导数为零的点一定是函数的极值点
答案:(1)错(2)错(3)错(4)对(5)错
深化学生对函数极值的概念,以及函数取极值与的逻辑关系
极值概念理解的总结提高
(ⅰ)极值是一个局部概念。由定义可知极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>,如下图
如何判别f(x0)是极大、极小值
填空:
(1)若满足,且在的两侧的导数________,则是的极值点,是极值,
(2)如果在两侧满足“左正右负”,则是的_______点,是_______;
(3)如果在两侧满足“左负右正”,则是的_______点,是_______.
让学生总结判断极值的方法。
(1)异号;(2)极大值;极大值;
(3)极小值;极小值
例题精讲
1、看图识极值(点)
说出极值点与相应的极值
2、求函数的极值(点)
对教材例1的处理方式:
要求阅读教材解析,模仿练习。以眼动、心动、手动的方式让学生对求解函数的极值的步骤有较深的印象。
函数极值(点)计算要加强练习,提高熟练程度。
作为平行班的学生基础不牢,应以最基本的几类函数求导练习为主,切忌本末倒置:让学生把重心放在导数计算上,而忽视了求极值(点)的方法步骤
设置上可以先让学生回忆几类基本函数的求导公式,板书在黑板上以学生查用之需。
补充练习:
求函数y=2x2+5x的极值
答案:x=-5/4;y=-25/8极小值
求函数y=3x-x3的极值
答案:x=-1,y=-2极小值;
X=1,y=2极大值
加强熟练程度与运算速度
加强对极值(点)的函数图像理解与认识
要注意结合图象理解极大、极小值概念
判断极值点的关键是这点两侧的导数异号
通过例题与练习加深对极大、极小值概念的理解,以及熟悉求函数极值的方法与步骤
方法小结
求函数极值的方法与步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
课后练习
1、函数在一点的导数值为是函数在这点取极值的( )
A 充分条件 B全品 必要条件
C 充要条件 D全品 必要非充分条件
答案 D 对于不能推出在取极值,反之成立
2、函数有( )
A 极大值,极小值
B全品 极大值,极小值
C 极大值,无极小值
D全品 极小值,无极大值
答案C ,当时,;当时,
当时,;取不到,无极小值
3、函数的定义域为开区间,导函数在内的图象如图所示,
则函数在开区间内有极小值点( )
A 个 B全品 个 C 个 D全品 个
答案A 极小值点应有先减后增的特点,即
4、函数,已知在时取得极值,则a=( )
A, 2 B. 3 C. 4 D. 5
答案:
5、若函数在处有极大值,则常数的值为_________;
答案 ,时取极小值
6、函数在处取得极值,则m=__________
答案 0
7、已知函数,当时,有极大值;
(1)求的值;(2)求函数的极小值
解:(1)当时,,
即
(2),令,得
【学情分析】:
在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。
【教学目标】:
(1)理解极大值、极小值的概念.
(2)能够运用判别极大值、极小值的方法来求函数的极值.
(3)掌握求可导函数的极值的步骤
【教学重点】:
极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
【教学难点】:
极大、极小值概念的理解,熟悉求可导函数的极值的步骤
【教学过程设计】:
教学环节
教学活动
设计意图
利用教材在
3.3.1中的
例1引入函数的极值概念
①观察y=f(x)的图像在x=1点的函数值f(1)与x=1附近的其他点的函数值的特征,并描述在x=1点及其附近导数的正负:
f(1)在x=1点及其附近是最小——;
y=f(x)在x=1附近的左侧是单减的——;
y=f(x)在x=1附近的右侧是单增的——;
提问:y=f(x)在x=1处是否整个函数的最小值?
不是,只是y=f(x)在x=1处附近的局部最小值
②观察y=f(x)的图像在x=4点的函数值f(4)与x=4附近的其他点的函数值的特征,并描述在x=4点及其附近导数的正负:
学生模仿完成
考虑到极值与最值容易混淆,学生对已有知识的同化易接受,我们以3.3.1
中的例1引出极值的概念,具体直观,同时对极值与最值区分是一目了然的。
概念抽象
y=f(x)在定义域上可导,
①若,且y=f(x)在x=a附近的左侧满足;在x=a附近的右侧满足,则称点a叫做y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值
②若,且y=f(x)在x=b附近的左侧满足;在x=b附近的右侧满足,则称点b叫做y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值
由具体函数图像抽象上升到一般极值概念
函数极值概念强化练习
概念判断练习:
(1)函数的极大值是函数在定义域上的最大值
(2)函数在某个区间或定义域上的极大值是唯一的
(3)函数某区间上的极大值一定大于极小值
(4)函数的极值点,导数一定为零
(5)导数为零的点一定是函数的极值点
答案:(1)错(2)错(3)错(4)对(5)错
深化学生对函数极值的概念,以及函数取极值与的逻辑关系
极值概念理解的总结提高
(ⅰ)极值是一个局部概念。由定义可知极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小
(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个
(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>,如下图
如何判别f(x0)是极大、极小值
填空:
(1)若满足,且在的两侧的导数________,则是的极值点,是极值,
(2)如果在两侧满足“左正右负”,则是的_______点,是_______;
(3)如果在两侧满足“左负右正”,则是的_______点,是_______.
让学生总结判断极值的方法。
(1)异号;(2)极大值;极大值;
(3)极小值;极小值
例题精讲
1、看图识极值(点)
说出极值点与相应的极值
2、求函数的极值(点)
对教材例1的处理方式:
要求阅读教材解析,模仿练习。以眼动、心动、手动的方式让学生对求解函数的极值的步骤有较深的印象。
函数极值(点)计算要加强练习,提高熟练程度。
作为平行班的学生基础不牢,应以最基本的几类函数求导练习为主,切忌本末倒置:让学生把重心放在导数计算上,而忽视了求极值(点)的方法步骤
设置上可以先让学生回忆几类基本函数的求导公式,板书在黑板上以学生查用之需。
补充练习:
求函数y=2x2+5x的极值
答案:x=-5/4;y=-25/8极小值
求函数y=3x-x3的极值
答案:x=-1,y=-2极小值;
X=1,y=2极大值
加强熟练程度与运算速度
加强对极值(点)的函数图像理解与认识
要注意结合图象理解极大、极小值概念
判断极值点的关键是这点两侧的导数异号
通过例题与练习加深对极大、极小值概念的理解,以及熟悉求函数极值的方法与步骤
方法小结
求函数极值的方法与步骤:
(1)确定函数的定义区间,求导数f′(x)
(2)求方程f′(x)=0的根
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
课后练习
1、函数在一点的导数值为是函数在这点取极值的( )
A 充分条件 B全品 必要条件
C 充要条件 D全品 必要非充分条件
答案 D 对于不能推出在取极值,反之成立
2、函数有( )
A 极大值,极小值
B全品 极大值,极小值
C 极大值,无极小值
D全品 极小值,无极大值
答案C ,当时,;当时,
当时,;取不到,无极小值
3、函数的定义域为开区间,导函数在内的图象如图所示,
则函数在开区间内有极小值点( )
A 个 B全品 个 C 个 D全品 个
答案A 极小值点应有先减后增的特点,即
4、函数,已知在时取得极值,则a=( )
A, 2 B. 3 C. 4 D. 5
答案:
5、若函数在处有极大值,则常数的值为_________;
答案 ,时取极小值
6、函数在处取得极值,则m=__________
答案 0
7、已知函数,当时,有极大值;
(1)求的值;(2)求函数的极小值
解:(1)当时,,
即
(2),令,得
- 02-25高中数学 2.2.11抛物线的几何性质教案 新人教A版选修1-1
- 02-251.1回归分析的基本思想及其初步应用第1课时
- 02-25高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A版选修1-1
- 02-25高一下册数学立体几何复习小结(2)教案 新人教A版必修2
- 02-25高一数学人教A版必修一精品教案:1.1.3集合的基本运算 Word版含答案
- 02-25教案高一数学人教版必修二 2.2.1直线与平面平行的判定
- 02-25高一下册数学两直线的交点坐标教案 新人教A版必修2
- 02-24高一下册数学直线与平面垂直(1)教案 新人教A版必修2
- 02-24高一上册数学人教A版选修1-1教案:1.4全称量词与存在量词(含答案)
- 02-22高一下册数学直线的点斜式、斜截式方程教案 新人教A版必修2