本文由 chenjinyan7701693 收集发布,转载请注明出处,如有问题请联系我们!高一上册数学人教A版数学必修一教案2.1.1指数(3)
第三课时
一.教学目标
1.知识与技能:
(1)掌握根式与分数指数幂互化;
(2)能熟练地运用有理指数幂运算性质进行化简,求值.
2.过程与方法:
通过训练点评,让学生更能熟练指数幂运算性质.
3.情感、态度、价值观
(1)培养学生观察、分析问题的能力;
(2)培养学生严谨的思维和科学正确的计算能力.
二.重点、难点:
1.重点:运用有理指数幂性质进行化简,求值.
2.难点:有理指数幂性质的灵活应用.
三.学法与教具:
1.学法:讲授法、讨论法.
2.教具:投影仪
四.教学设想:
1.复习分数指数幂的概念与其性质
2.例题讲解
例1.(P52,例4)计算下列各式(式中字母都是正数)
(1)
(2)
(先由学生观察以上两个式子的特征,然后分析、提问、解答)
分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.
我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?
其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.
第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.
解:(1)原式=
=
=4
(2)原式=
=
例2.(P52 例5)计算下列各式
(1)
(2)>0)
分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.
解:(1)原式=
=
=
=
=
(2)原式=
小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.
课堂练习:
化简:
(1)
(2)
(3)
归纳小结:
1.熟练掌握有理指数幂的运算法则,化简的基础.
2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.
作业:P59-60 习题2.1
A组 第4题
B组 第2题
课堂训练
1、计算:;
解:原式=
;
2、化简:。
解:原式=
3、已知,求的值。
解析:∵,∴,
∴,∴,
∴,∴,
又∵,
∴。
4、化简下列各式()
【解析】
【点评】:(1)本题属于“了解”层次,主要考查考生对有理指数幂的含义、幂的运算的识记了解情况;(2)解答这类问题的关键是先把根式转化成分数指数幂的最简形式,然后做幂的运算。
5、计算:
解:原式==22×33+2 — 7— 2—1=100
一.教学目标
1.知识与技能:
(1)掌握根式与分数指数幂互化;
(2)能熟练地运用有理指数幂运算性质进行化简,求值.
2.过程与方法:
通过训练点评,让学生更能熟练指数幂运算性质.
3.情感、态度、价值观
(1)培养学生观察、分析问题的能力;
(2)培养学生严谨的思维和科学正确的计算能力.
二.重点、难点:
1.重点:运用有理指数幂性质进行化简,求值.
2.难点:有理指数幂性质的灵活应用.
三.学法与教具:
1.学法:讲授法、讨论法.
2.教具:投影仪
四.教学设想:
1.复习分数指数幂的概念与其性质
2.例题讲解
例1.(P52,例4)计算下列各式(式中字母都是正数)
(1)
(2)
(先由学生观察以上两个式子的特征,然后分析、提问、解答)
分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.
我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?
其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.
第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.
解:(1)原式=
=
=4
(2)原式=
=
例2.(P52 例5)计算下列各式
(1)
(2)>0)
分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.
解:(1)原式=
=
=
=
=
(2)原式=
小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数.
课堂练习:
化简:
(1)
(2)
(3)
归纳小结:
1.熟练掌握有理指数幂的运算法则,化简的基础.
2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.
作业:P59-60 习题2.1
A组 第4题
B组 第2题
课堂训练
1、计算:;
解:原式=
;
2、化简:。
解:原式=
3、已知,求的值。
解析:∵,∴,
∴,∴,
∴,∴,
又∵,
∴。
4、化简下列各式()
【解析】
【点评】:(1)本题属于“了解”层次,主要考查考生对有理指数幂的含义、幂的运算的识记了解情况;(2)解答这类问题的关键是先把根式转化成分数指数幂的最简形式,然后做幂的运算。
5、计算:
解:原式==22×33+2 — 7— 2—1=100
- 11-04高一下册数学2.1 合情推理与演绎推理(二)
- 11-02高一上册数学人教A版选修1-1教案:3.2立体几何中的向量方法第1课时(含答案)
- 11-02高一上册数学人教A版选修1-1教案:2.3.2抛物线的几何性质(2)(含答案)
- 11-02高一上册数学函数模型的应用实例(Ⅱ)
- 11-02高一上册数学人教A版选修1-1教案:2.3复合函数的导数(含答案)
- 10-30教案高一数学人教版必修二 2.3.1.2直线和平面所成的角
- 10-30高一下册数学空间两点间的距离公式(2)教案 新人教A版必修2
- 10-30高一上册数学人教A版数学必修一教案1.1.3集合的基本运算
- 10-30高中数学 1.1.2四种命题1.1.3四种命题的相互关系教案 新人教A版选修1-1
- 10-29高中数学 1.4.1全称量词1.4.2存在量词教案 新人教A版选修1-1